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Abstract 7 
Animal life is rhythmic. Here we provide an overview of various rhythmic behaviors, connected 8 

environmental factors and endogenous mechanisms. We cover terrestrial species, but also highlight 9 

aquatic environments with typically complex interconnected rhythms. We further address diel, seasonal 10 

and potential lunar rhythms of humans. While we cannot be complete, we aim to emphasize three 11 

aspects: First, to raise awareness for the all-encompassing presence of behavioral rhythms and their 12 

importance in ecology and evolution. Second, to raise awareness how limited our mechanistic 13 

understanding is, besides analyses in a small set of model species. Finally, we discuss how 14 

anthropogenic effects can affect behavioral rhythmicity and how this might affect ecosystems in the 15 

future, as “For the times they are a-changin'”. 16 

 17 

Introduction	18 
While few have put it into words just as poetically as Bob Dylan, it is clear that life is full of changes, 19 

many of which are rhythmic. Environmental cycles impact humans in various ways, but are also central 20 

in shaping the biology and interactions of countless other species. In fact, the list of rhythmic behaviors 21 

is seemingly endless ([1–4], Table 1). Abiotic cycles are driven by the celestial movements of earth and 22 

moon, as well as the inclination of the earth axis relative to the sun. The earth’s rotation creates the 23 

day/night cycle, while its revolution around the sun, together with the inclination of the earth’s axis, 24 

results in annual cycles. Our planet’s rotation and inclination also shape the global wind and water 25 

current system – both with their own rhythms – partially also depending on local environmental and 26 

global physical interactions. Not all climate rhythms (e.g. El Niño) are fully understood. The revolution 27 

of the moon around earth and its relative position to the sun further create light, gravitational and 28 



 

 2 

magnetic cycles of 27.3 days (sidereal period),  29.5 days (synodic period) and subsets thereof, as well 29 

as lunidian and tidal cycles of 24.8 and 12.4 hours, respectively [2,3]. Other rhythms, such as the about 30 

eleven-year cycle of solar activity exist and others, less prominent to humans, might not have even been 31 

uncovered. 32 

Organisms can either respond directly to these cyclic changes of their environment or they can anticipate 33 

them with endogenous oscillators (“clocks”), providing advantage for animal fitness. The endogenous 34 

period of these oscillators corresponds closely to the respective environmental cycle (e.g. a ~24 hour 35 

circadian oscillator for the solar day/night cycle, a ~29.5 day circalunar oscillator for the monthly lunar 36 

cycle) and can also synchronize physiology and behavior across a population. For most of the mentioned 37 

abiotic cycles reports of corresponding endogenous oscillator systems exist [2,5–7]. 38 

However, while endogenous oscillator systems improve species fitness as long as the ecological 39 

conditions remain stable, a too rigid coupling of behavior and physiology to oscillators limits species 40 

adaptation, and hence expansion potential. This aspect is particularly interesting in the context of large-41 

scale environmental changes in the earth’s past and future. In order to predict, how animals might 42 

respond to such changes, the mechanisms and their possible modulators controlling the different 43 

rhythms and endogenous oscillators need to be understood. Yet, while the molecular and cellular 44 

manifestation of circadian clocks in animals have been unraveled in great detail [5], much less is known 45 

about the mechanistic nature of rhythms and clocks with different period lengths, e.g. circatidal, 46 

circalunar [8,9] or circannual rhythms (reviewed in [7]), and about the pathways by which these clocks 47 

affect animal behavior. 48 

While molecular model species are typically analyzed under highly artificial laboratory conditions, the 49 

environmental cycles animals experience and that govern their behavioral rhythms strongly depend on 50 

their natural habitats. The tropics are mostly dominated by diel light cycles that are constant throughout 51 

the year, while high latitude habitats experience strong seasonal cycles which include phases of polar 52 

night and midnight sun [10]. Temperature is a rather reliable time cue in most terrestrial habitats [10], 53 

but in large aquatic habitats the heat capacity of water, currents and vertical mixing often results in 54 

constant or unpredictable temperature conditions. In contrast, parameters like oxygen concentration or 55 
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physical forcing (e.g. due to waves) are mostly irrelevant on land, but can be highly cyclic in aquatic 56 

habitats like the intertidal zone. 57 

Here we aim to provide an overview on recent findings how environmental cues and endogenous clocks 58 

evoke rhythms of behavior. 59 

The	control	by	environmental	cues	60 
All regularly occurring major behavioral processes have their time niche(s) during which they preferably 61 

occur (Table 1). The detection of endogenous oscillators relies on laboratory experiments. Of note, when 62 

observing populations in the absence of entrainment cues, a lack of synchronized behaviors can also 63 

reflect the desynchronization of the individual oscillators instead of their absence. For these reasons it 64 

is often still unclear if a specific naturally occurring behavior is oscillator controlled (Table 1). 65 

The environmental cues evoking rhythmicity and entraining clock systems are diverse (Table 2) and can 66 

send conflicting information (e.g. light vs. temperature). The same type of cue informs about multiple 67 

rhythms (e.g. light provides diel, monthly & seasonal information), while also itself being subject to 68 

short-term non-cyclic perturbances (e.g. cloud cover). How do animals sense these stimuli, prioritize the 69 

input, filter for signal/noise and adjust their behaviors accordingly? Below we somewhat artificially split 70 

the sensory cues by types of rhythm for better readability, but it should be clear that sensory input for 71 

different rhythms occurs at the same time. 72 

Daily	cycles	73 
With a focus on land animals as experimental models, light and temperature are typically considered the 74 

most important cues for the entrainment of diel behavioral rhythms and circadian clocks. Light is a 75 

complex cue, as different wavelengths can have different effects on animal rhythms [11,12]. Blue light 76 

is most prominently referred to for circadian clock entrainment, likely due to the large proportion of 77 

research focusing on mammalian entrainment mechanisms. In mammals, light information is transmitted 78 

via melanopsin-positive retinal ganglion cells to the central brain circadian pacemaker (i.e. the mammal 79 

suprachiasmatic nucleus, SCN) [13–15], but also directly modulates behavior [16]. However, it has 80 

become increasingly clear that light information provided by rods and cones is also channeled to the 81 

SCN for circadian clock entrainment [13,17], and possibly other brain areas. In insects blue light leads 82 

to the activation of a light-responsive cryptochrome (cry1, also known as L-cry or Drosophila-type cry), 83 

which affects the stability of Timeless and by this re-sets the phase of the circadian clock [18–20]. In 84 
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addition to cry1, light also impacts via several Opsins expressed in the fly’s eyes and ocelli, likely 85 

improving the adjustment of daily circadian rhythms to different seasons [21,22]. 86 

In Drosophila light and temperature jointly affect the activity rhythm. ionotropic receptor 25a is 87 

required for temperature entrainment of the fly’s circadian clock, independent of light [23], while nocte 88 

integrates both cues [24]. In mice diel changes in tissue oxygen levels can further alter the expression 89 

rhythms of circadian clock genes via hypoxia-inducible factor 1α [25]. Interestingly, oxygen is also used 90 

as an entrainment cue in a sea-anemone-symbiont relationship, where the endosymbiotic algae 91 

Symbiodinium sets the 24hrs behavioral rhythm of its host Aiptasia diaphana. Without symbionts, the 92 

sea-anemone exhibits a circatidal rhythm [26]. Such effects on rhythmicity caused by symbionts (or 93 

parasites) even extend to humans. The circadian rhythms of human gut bacteria and their metabolites 94 

can entrain the liver circadian oscillator and in extend affect human health. In turn, the gut microbiome 95 

shows direct responses to the host’s eating habits and circadian rhythms, as well as disruption thereof 96 

(reviewed in [27]). These examples provide evidence that rhythmic cues are not limited to the external 97 

environment, but also extend to the internal, physiological level. Thus, the principles of ecological 98 

interactions may also help to better understand rhythmic aspects of human physiology and health. 99 

All these different biotic and abiotic environmental cues act together in the natural habitat, and it is 100 

hence not too surprising that artificial experimental conditions can cause different behavioral rhythms 101 

than the environmental cycles in the natural habitat. For example, while Drosophila melanogaster has 102 

a crepuscular activity pattern in laboratory recordings, experiments under natural light conditions 103 

revealed an additional activity peak in the afternoon [28,29]. Similar observations exist for mice and 104 

hamsters [30,31], highlighting the importance of more naturalistic studies. 105 

Seasonal	cycles	106 
For seasonal behaviors and life cycles like hibernations/diapause, migrations or reproduction (Table 1), 107 

the most relevant environmental terrestrial cues are likely light, temperature and food availability (Table 108 

2). Photoperiod (daylength) can be measured by the co-incidence timing of light signals relative to 109 

circadian time, resulting in long-day or short-day responses [32]. For sheep and mice melatonin, whose 110 

expression is regulated by circadian time and directly by light, serves as a molecular readout for 111 

daylength. Melatonin controls peak levels of the transcription factor eya3 by two means. It synchronizes 112 

its height phase to about 12hrs after night onset, causing a peak in the late night/early morning, 113 
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depending on daylength. In addition, melatonin also suppresses eya3 expression. Under long 114 

photoperiods melatonin is absent at the time eya3 peaks. The resulting increased EYA3 levels together 115 

with the circadian transcription factor TEF result in an upregulation of TSH and subsequently 116 

hypothalamic Deiodinase 2. This enzyme converts the inactive form of thyroid hormone (T4) to the 117 

active version (T3), which finally stimulates gonadotropins and the downstream physiological and 118 

behavioral responses (reviewed in [7,33]). This switch between responses seems to be rather binary 119 

causing a sharp switch in behavior [34] at the critical photoperiod [35]. The critical photoperiod itself 120 

can change depending on the environmental temperature [36,37], via an unknown mechanism. Many 121 

species show a latitudinal gradient in their critical photoperiods corresponding to the latitudinal changes 122 

in day length [10,38]. In insects and birds this is possibly connected to differences in allele frequencies 123 

of circadian clock and neuropeptide genes [39–41]. 124 

Again, natural light conditions are important. Drosophila melanogaster displays more pronounced 125 

photoperiodic responses under natural lights with gradual changes compared to a rectangular lights 126 

on/off regime [42]. These external cues can either act directly or by entraining an endogenous circannual 127 

oscillator [1,7,43–48], the latter being particularly important if the physiological and behavioral 128 

responses need preparation time and/or sensory stimuli might not be perceived (e.g. awakening from 129 

diapause). The mechanisms of circannual clocks are still poorly understood, but cyclic changes in 130 

chromatin condensation [7], as well as histogenesis [49] are being discussed. 131 

While diel and seasonal behavioral rhythms are just as common in aquatic habitats as they are on land 132 

[50], they are less studied. Medakafish has started to emerge as functionally well-amenable model to 133 

study the role of seasons. Animals kept under different seasonal conditions exhibit multifold changes in 134 

their retinal opsins and phototransduction repertoire, modulating visual perception and subsequent 135 

behavior [51]. Interestingly, also humans exhibit such seasonal changes in color perception, albeit the 136 

underlying mechanisms are still unclear [52]. 137 

An ecologically crucially relevant emerging marine model is the copepod Calanus finmarchicus (Figure 138 

1, Table 1), which reproduces and feeds in surface waters in spring/summer and overwinters in deeper 139 

water layers. The initiation and termination of the overwintering phase (referred to as diapause) have 140 

been studied intensively, but the controlling factors are still unclear [53]. Seasonal copepod gene 141 
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expression, physiology and circadian clock rhythmicity suggest that initiation could be controlled by 142 

internal lipid levels and a critical photoperiod potentially affected by temperature and food availability. 143 

In contrast, a circannual clock could trigger the copepod’s emergence from diapause [54]. 144 

Lunar,	lunidian	and	tidal	cycles	145 
Moon-related behavioral cycles with a circatidal period (~12.4 hours), circalunidian (~24.8h) or a 146 

circa(semi)lunar period (~14.8/~29.5 days) are especially well-documented in the marine environment, 147 

but have also been observed in terrestrial and limnic habitats [55–57]. Most intertidal species display 148 

tidal rhythms in activity and foraging and for several species these rhythms also persist under constant 149 

conditions, implying an endogenous oscillator [2,3,58,59]. So far, the mechanisms entraining and 150 

maintaining circatidal rhythmicity are mostly unclear. In the horseshoe crab Limulus polyphemus water 151 

pressure is the major circatidal entrainment cue, while light and temperature are of minor importance 152 

(Table 2) [60]. The circatidal activity rhythm of the isopod Eurydice pulchra can be entrained by 153 

mechanical stimulation, and a knock-down of period and circadian clock disruptions by LL did not 154 

abolish it, while a CK1d/e inhibitor led to period lengthening of both circadian and circatidal periods 155 

(Table 1) [9]. This result and other behavioral studies suggest that while circadian and circatidal clocks 156 

can be separated, common molecular denominators exists [2,3,9,61–63]. 157 

Circa(semi)lunar rhythms occur in various species from corals to vertebrates and typically time 158 

reproductive behavior and physiology. The moon determines the days when gametes are ready for 159 

release and particular mating behaviors will be exerted [64]. Often, this timing is interlinked with 160 

circalunidian or circadian timing, i.e. the exact mating and spawning happens only at specifics hours 161 

that themselves shift with the moon phase [65,66]. For example, in the intertidal midge Clunio marinus 162 

both circalunar and circadian clocks, genetically adapted to match the local tidal regime, determine the 163 

exact timing of eclosion and subsequent mating [67]. In the bristle worm Platynereis dumerilii the 164 

circalunar clock and light modulate circadian clock gene expression and locomotor activity, while a 165 

chemical disruption of P. dumerilii’s circadian clock did not disrupt the circalunar spawning rhythm. 166 

This implies that circadian clock oscillations are not required for circalunar core clock functions 167 

[8,68,69]. 168 
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There are several examples for circalunar behavioral rhythms (Table 1) that are so impressive that they 169 

even serve as touristic advertisement. The mass migrations of the red crabs on the Christmas islands, 170 

the Palolo worms’ nuptial dances close to Samoa, the ostracods’ bioluminescent mating signals close to 171 

Belize and the mass spawning events of corals at the Great Barrier Reef unequivocally demonstrate the 172 

influence of lunar (and connected solar) timing on biology and ecology (Table 1). Moonlight can further 173 

directly modulate zooplankton diel vertical migrations (DVM) in polar habitats (Figure 1) [70], while 174 

DVM itself is at least partially controlled by a circadian clock (Table 1) [71,72]. 175 

Probably the so far best-studied example for the interaction of different rhythms are the annual mass 176 

spawning events of corals [73–75]. Multiple detailed transcriptomic studies have started to identify 177 

potential molecular players in the coral Acropora, millepora [75–77]. However, functional studies will 178 

be required to disentangle the roles of individual genes in the interacting rhythms. In the jellyfish Clytia 179 

hemisphaerica disruption of Opsin9 implicates this photoreceptor as trigger for gamete release [78] and 180 

a similar mechanism may help to coordinate coral spawning. 181 

Especially the latter examples illustrate the complexity of timing systems in the marine environment, 182 

the environment in which animal life with its rhythms originally evolved [79,80]. It is hence likely that 183 

their better understanding will also help to unravel the foundations on which human rhythmicity is built. 184 

Human	rhythms	of	behavior	185 
The fact that circadian timing is very important for human behavior and physiology and that its 186 

disruptions results in severe health consequences is well-established and covered in detail elsewhere, 187 

including clinically-relevant recommendations [81–83], impacts on fear behavior, food consumption, 188 

cognition, sleep and the interconnection to hormonal control and possible genetically anchored 189 

interindividual variables [84,85]. 190 

The roles of other rhythms and possible oscillators are less clear. Strong evidence for human behavioral 191 

seasonality comes from mood disorders, e.g. seasonal affective disorder (SAD) [86] and the increase of 192 

suicides during spring times [87,88]. However, the extent of human seasonality and the mechanisms 193 

behind it are unclear. Lunar-related behavioral rhythms in humans are still subject to intensive 194 

discussions. This is likely because reported instances are sporadic and sometimes contradictory, such as 195 

in sleep studies where smaller studies showed statistically significant lunar-phase differences whereas a 196 
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study that pooled data over a large geographic range did not [89–91]. The sleep studies were performed 197 

under laboratory conditions, i.e. in the absence of moonlight. This implies that any effect should be 198 

caused by an endogenous oscillator with a circalunar period, ~29.5 days. The menstrual cycle of human 199 

females fits this description and it is clear that it is connected to a range of hormonal changes, influencing 200 

mood and behavior. Evidence for monthly hormonal changes have also been described for men, albeit 201 

the results should be treated with caution due to the small study group size [92]. If such endogenous 202 

monthly hormonal (i.e. circalunar) cycles can be locally synchronized across a population by 203 

environmental cues, then its effects – including behavioral alterations – will be phase-synchronized with 204 

the natural moon phases. This could explain synchronizations across smaller groups. Alternatively, the 205 

moon can still function as a non-photic weak zeitgeber and depending on the signal/noise ratio this might 206 

be picked up in some studied cohorts. 207 

Interestingly, recent work on two small-scale African populations in their local environments showed 208 

that sleep/activity differences correlated with the lunar cycle in hunter-gatherers, but not in rural 209 

agriculturists [93]. 210 

Another heavily debated field is the connection between birth rate and lunar cycle. Studies performed 211 

during the 1940ies-1960ies repeatedly observed statistically significant correlations, while they 212 

vanished from the studies performed later on and the reasons are debated (reviewed in [64]). 213 

Finally, bipolar mood cycles were found to oscillate in synchrony with three types of lunar cycles: the 214 

14.8-day spring–neap cycle, the 13.7-day declination cycle and the 206-day cycle of perigee-syzygies. 215 

Additional analyses of body temperature cycles suggest that this could be explained by a periodic 216 

entrainment of the circadian pacemaker to the slightly longer circalunidian (24.8hr) cycle of the moon 217 

and by this resulting in pacemaker’s phase-relationship to sleep that triggers switches from depression 218 

to mania [94]. Overall, the possibility of lunar rhythms impacting on human behavior should not be too 219 

readily dismissed. Humans are just another species of animals after all. Future work on animal models 220 

with clear circalunar rhythmicity will allow to uncover molecular mechanisms which can subsequently 221 

be tested in humans. 222 
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Times	of	environmental	change	223 
Rhythms and their underlying clocks likely allow animals to be optimally prepared for the environmental 224 

conditions of their ecological niches. However, changing environmental conditions will force species to 225 

shift their habitats and temporal niches. Already in the past, adaptation to global climate change and 226 

radiation required the adaptation to new ecological niches. A prominent example for this is the radiation 227 

of nocturnal mammals to all timing niches after the dinosaur extinction, suggesting that a certain level 228 

of flexibility in the underlying clock systems is advantageous [95]. Nevertheless, the adaptive capacities 229 

of behavioral rhythmicity and the corresponding oscillator systems have so far received little attention. 230 

In the future, behavioral rhythms of animals will be affected by several major developments: 231 

Environmental changes due to anthropogenic CO2 emissions affect ecosystems on a global scale. Human 232 

infrastructure and the associated light pollution disrupt behavior and physiology of animals and humans. 233 

Another biologically highly relevant effect is the increase of environmental temperatures. Species try to 234 

stay within their optimal temperature range to avoid heat/cold stress, meaning that increasing 235 

temperatures cause shifts to higher (colder) latitudes, as observed in various terrestrial and marine 236 

species [96–99]. These shifts to higher latitudes are accompanied by more pronounced seasonal changes 237 

in photoperiod and ultimately phases of permanent darkness or sunlight in polar regions. Photoperiod is 238 

unaffected by climate change and these extreme light conditions could inhibit latitudinal distribution 239 

shifts leading to fitness loss due to suboptimal temperatures [100]. Alternatively, the circadian clock 240 

systems, while itself less affected by temperature changes due to its intrinsic temperature compensation 241 

mechanisms, may have to work under photoperiods that exceed their entrainment range, resulting in 242 

circadian arrhythmicity. While the originally tropic, strongly rhythmic Drosophila melanogaster loses 243 

its rhythmicity under extreme photoperiods, high latitude Drosophila species already exhibit weaker 244 

overall circadian rhythmicity and higher plasticity [101]. 245 

Especially for aquatic habitats in high latitudes, ecological timing mismatches in food-chains are being 246 

reported, e.g. while seasonal phytoplankton blooms tend to occur earlier, the behavioral and 247 

physiological rhythms of higher tropic levels like zooplankton or predatory fish change less (Figure 1) 248 

[102–105].  249 
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However, disruptive effects by increasing temperature are likely not be restricted to animals in higher 250 

latitudes. Possibly connected to higher temperatures, behavioral timing alteration have been reported for 251 

large populations of red sea corals, which start to exhibit a loss of spawning synchrony [106]. 252 

Nowadays, natural darkness is virtually absent in areas inhabited by humans. Artificial light at night 253 

(ALAN) delays the human circadian cycle and shortens rest times [107], likely contributing to 254 

psychological disorders [108], while also a variety of animal rhythms are affected [109,110]. Bird 255 

melatonin levels are reduced by ALAN, affecting diel activity patterns and seasonal reproduction times 256 

[111]. A recent study provides compelling reasoning that the dramatic decline of the European hamster 257 

is largely due to timing problems of its circannual reproductive cycle, part of this problem might be 258 

caused by light pollution [112]. In aquatic habitats nocturnal light reduced the magnitude of DVM in 259 

the model crustacean Daphnia [113], while similar effects were observed in an Arctic zooplankton 260 

community during polar night [114]. 261 

Further and largely unexplored impacts on animal behavioral rhythms can arise from chemicals (e.g. 262 

pesticides, sewage or pharmaceutical drugs). For example, the ingestion of insecticide-treated seeds 263 

delays bird migrations. This likely reduces their fitness due to a delayed arrival at their destination [115]. 264 

As human impact on earth will likely not decrease in the future, a detailed understanding of mechanisms 265 

controlling behavioral rhythms will be essential to make predictions about future ecosystem changes, as 266 

well as to propose measures to minimize anthropogenic effects. 267 

Conclusions	268 
Here we aim to emphasize the omnipresence of rhythms in animal behaviors and how little we know 269 

about them, beyond daily timing mechanisms in mouse and Drosophila. Yet, understanding different 270 

clocks and rhythms other than circadian, the integration of different timing regimes in one individual 271 

and in different species adapted to different ecological niches is crucial to understand how networks of 272 

species might respond to changes in their current ecological niches due to climate change and artificial 273 

light at night. Understanding the interplay of different rhythms is likely also important for a better 274 

understanding of human behavior and behavioral disorders, e.g. sleep and mood. We also put a specific 275 

focus on the aquatic habitats due to the complexity of this environment and the interacting behavioral 276 

rhythms and clock system resulting from it. In summary, this is a strong pledge for dedicated studies on 277 
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the chronobiological mechanisms underlying behavior in animals from diverse habitats, including land 278 

and sea.  279 
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Table 1: Selection of behavioral rhythms. We present a (far from complete) list of different behavioral rhythms, the factors controlling them and their relevance for the organisms as well as other 
species. In cases where examples are mentioned for different rhythmicities, this is because behavioral rhythms can cycle over multiple periods, usually in an interactive manner. Question marks 
(?) indicate that the respective points are still under debate or completely unknown. 

Behavioral 
process Rhythmicity Example Controlling factor(s) Fitness benefits Ecological relevance Possible anthropogenic 

threats  

Reproduction Seasonal 
Spawning once per year (e.g.coral 
Acropora millepora)[75,76] 

Temperature, circannual 
clock?, photoperiod? Mating coordination Massive food burst, timing 

of predator reproduction 
Temperature increase, 
ocean acidification? 

  winter mating (e.g.sheep Ovis aries)[7] Circannual clock, photoperiod  Food for offspring Timing of predator 
reproduction? Light pollution 

  
Spawning in spring/summer (e.g. 
polychaete Platynereis dumerilii)[8] Temperature? Food for offspring ? Temperature increase 

 Lunar 
Spawning after full moon (e.g.coral 
Acropora millepora)[75,76] 

Moonlight, circalunar clock Mating coordination, reduced 
predation risk 

Massive food burst, timing 
of predator reproduction 

Light pollution, ocean 
acidification? 

  
Spawning after full moon (e.g. 
polychaete Platynereis dumerilii)[8] Moonlight, circalunar clock Mating coordination, reduced 

predation risk ? Light pollution 

  
Emergence & nuptial dance at lowest 
low tide (e.g. midge Clunio marinus)[67] Moonlight, circalunar clock Mating coordination, offspring 

protection ? Light pollution 

  
Mating behavior around new moon 
(e.g. badger Meles meles)[55] Moonlight? Predator avoidance? ? Light pollution 

 Diel 
Norcturnal spawning (e.g.coral 
Acropora millepora)[75,76] Light, circadian clock Mating coordination, reduced 

predation risk 
Massive food burst, timing 
of predator reproduction 

Light pollution, ocean 
acidification? 

  
Nocturnal spawning (e.g. polychaete 
Platynereis dumerilii)[8] Light, circadian clock Mating coordination, reduced 

predation risk ? Light pollution 

  
Emergence & nuptial dance at lowest 
low tide (e.g.midge Clunio marinus)[67] Light, circadian clock Mating coordination, offspring 

protection ? Light pollution 

  
Larvae release at sunset (e.g. crab 
Rhithropanopeus harrisii)[116] Light, circadian clock Reduced predation risk ? Light pollution 

  
Nocturnal egg laying & emergence 
(e.g. sea turtles)[117,118] 

Light, circadian clock? Reduced predation risk ? Light pollution, poaching 

 Tidal 
Larvae release at high-tide transition 
(e.g.crab Rhithropanopeus harrisii)[116] Water pressure, circatidal clock Larvae dispersal ? ? 

Migration Seasonal 
Latitudinal migration (e.g.various bird 
species, butterfly Danaus plexippus, 
hoverflies Syrphinae)[41,115,119–121] 

Photoperiod, circadian clock, 
magnetic compass, sun 
compass, temperature 

Cold temperature evasion, increased 
genetic exchange, food availability 

Dispersal of plants & small 
invertebrates, pollination, 
parasite consumption, food 

Light pollution, magnetic 
fields, pesticides 

  
Shoreward migration (e.g. Christmas 
Island red crab 
Gecarcoidea natalis)[122,123] 

Monsoon rain, others? Terrestrial lifestyle, mating 
coordination ? Human infrastructure 

creates obstacles 

 Lunar 
Migration & foraging intensity in 
nocturnal birds (Caprimulgus 
europeaus)[57] 

Moonlight, circalunar clock? Increased overall migration speed & 
coordination 

Rhythmic predation 
pressure on bird prey Light pollution 
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Shoreward migrations peak at new 
moon (e.g. Christmas Island red crab 
Gecarcoidea natalis)[122,123] 

Moonlight?, circalunar clock? Avoidance of desiccation and high 
temperatures ? ? 

 Diel 
Vertical migration (e.g. zooplankton 
Calanus finmarchicus)[72] Light, circadian clock Optimized feeding vs. predator risk Shapes pelagic ecosystems, 

global carbon cycle ? 

Activity & 
Inactivity Seasonal 

Diapause in deep waters (e.g. 
copepods Calanus spec.)[53,54] 

Lipid content?, photoperiod?, 
circannual clock? 

Winter survival, additional energy 
for reproduction 

Global carbon cycle, 
trophic energy transfer 

Temperature increase, 
shifts in phytoplankton 
timing 

 Diel 
sleep/wake cycle (e.g. Homo 
sapiens)[85] Light, circadian clock Regeneration, predator avoidance Temporal niche creation Light pollution 

  
Locomotion (e.g. horseshoe crab 
Limulus polyphemus)[60] Light, circadian clock Mating coordination Food chain Light pollution 

 Diel, 
bimodal? 

Locomotion/foraging (e.g. Drosophila 
melanogaster)[28,29] Light, circadian clock Predator avoidance ? ? 

 Tidal 

Locomotion (e.g. horseshoe crab 
Limulus polyphemus, acoel 
Symsagittifera roscoffensis, isopod 
Eurydice pulchra)[9,60,124] 

Water pressure, vibration, 
light, circatidal clock 

Mating coordination, avoidance of 
displacement, optimization of 
feeding/photosynthesis of symbionts 

Food chain Light pollution, chemical 
pollution 

 Others 
Activity of deep sea vent/seep fauna 
(several taxa)[125,126] 

Water pressure?, currents?, 
chemical food cues? Increased food consumption? ? ? 
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Table 2: Overview of rhythmic environmental cues. The mentioned mechanisms mediating the cues to endogenous 
timing systems and behavioral rhythms were identified in individual species, but can not be assumed to apply 
generally. 

Rhythmic cue Period Terrestrial/aquatic relevance Known mediating mechanism(s) 

Su
n

lig
h

t 

intensity Daily, Annual 
Both (aquatic à change with 

depth) 
Opsins[22], cryptochromes[19] 

spectral 

composition 
Daily, Annual 

Both (aquatic à change with 

depth) 
Opsins[78], cryptochromes[127] 

photoperiod Annual 
Both (aquatic à change with 

depth) 

External coincidence via melatonin 

& eya3 (pituitary)[7], opsins[128] 

Moonlight Monthly 
Both (aquatic à change with 

depth) 

Cryptochromes[129], post-

transcriptional?[130], GnRH-like 

pathways? (Andreatta et al., in 

revision) 

 Daily (circalunidian) 
Both (aquatic à change with 

depth) 
Cryptochromes?, opsins? 

Temperature Annual Both ? 

 Daily Mostly terrestrial 
ionotropic receptor 25a[23], 

nocte[131] 

Food availability Annual Both Starvation response? 

 Monthly Aquatic ? 

Food availability Daily Both Insulin-triggered cascade[132] 

Oxygen concentration Annual Aquatic ? 

 Daily 
Both (physiological oxygen 

levels) 
HIF1α[25] 

 Tidal Aquatic ? 

Pressure/mechanical 

forces/vibration (tides) 
(Semi)monthly Aquatic ? 

 Tidal Aquatic ? 

Salinity Tidal Aquatic ? 

Magnetic field 
Daily, tidal, 

monthly 
Likely both Cryptochromes[133,134], others? 
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Figure 1: Environmental and biological rhythms. The figure illustrates different diel and seasonal rhythms on the 
example of a polar pelagic ecosystem. Spring/Summer: (1) Clear day/night cycle and midnight sun in summer, (2) 
Phytoplankton bloom triggered by light after ice breakup. (3) Pronounced zooplankton diel vertical migration 
(DVM) à desynchronized during midnight sun. (4) Larger predators follow zooplankton migration. (5) Seasonal 
migrators benefit from food availability. (6) Seal reproduction anticipates ice breakup and productive season. (7) 
Diel activity rhythms of benthic species. (8) High productivity and vertical migrations contribute to carbon export. 
Winter: (9) Weak day/night cycle or permanent night. (10) Moonlight can directly affect DVM. (11) DVM weaker 
but still existent. (12) Minimal carbon export. (13) Seasonal sea ice cover à delayed relative to photoperiod. (14) 
Seasonal changes in habitat usage. (15) Benthic diel rhythms can persist in polar night. (16) Seasonal copepod 
diapause at depth à metabolization of energy storages contributes to carbon export. References: [54,70,71,135–
140] 
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