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SUMMARY

Classical and modern ethological studies suggest
that animal behavior is organized hierarchically
across timescales, such that longer-timescale be-
haviors are composed of specific shorter-timescale
actions. Despite progress relating neuronal dy-
namics to single-timescale behavior, it remains
unclear how different timescale dynamics interact
to give rise to such higher-order behavioral organiza-
tion. Here, we show, in the nematode Caenorhabditis
elegans, that a behavioral hierarchy spanning three
timescales is implemented by nested neuronal dy-
namics. At the uppermost hierarchical level, slow
neuronal population dynamics spanning brain and
motor periphery control two faster motor neuron os-
cillations, toggling them between different activity
states and functional roles. At lower hierarchical
levels, these faster oscillations are further nested in
a manner that enables flexible behavioral control in
an otherwise rigid hierarchical framework. Our find-
ings establish nested neuronal activity patterns as a
repeated dynamical motif of the C. elegans nervous
system, which together implement a controllable
hierarchical organization of behavior.

INTRODUCTION

Animal behavior unfolds over a wide range of timescales, from

sub-second muscle contractions to circadian rhythms. Nervous

systems not only act on each of these timescales but must also

coordinate across them to implement long-term behavioral stra-

tegies and avoid interfering actions. Classical (Dawkins, 1976;

Tinbergen, 1951) and modern (Berman et al., 2016; Glaze and

Troyer, 2006; Gomez-Marin et al., 2016; Marques et al., 2018;

Wiltschko et al., 2015; Duistermars et al., 2018) ethological

studies posit that such inter-timescale coordination is hierarchi-

cal, with longer timescales at higher hierarchical levels. Specific

shorter-timescale actions are constrained to occur only in the

context of a hierarch, a particular longer-timescale motor pro-

gram or behavioral state (Dawkins, 1976). Tinbergen described
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stickleback behavior as hierarchical, with the reproductive

instinct encompassing sub-behaviors like nest building or defen-

sive fighting; each of these, in turn, consists of specific sub-

actions like digging or biting (Tinbergen, 1951). Modern quantita-

tive analyses suggest that behaviors as diverse as birdsong and

Drosophila locomotion are organized hierarchically (Berman

et al., 2016; Glaze and Troyer, 2006).

While behavioral evidence supports the hierarchical model,

neurophysiological evidence is lacking. It thus remains possible

that the underlying neuronal mechanisms are entirely non-hierar-

chical (Berman et al., 2016). For example, while birdsong can be

described hierarchically (Glaze and Troyer, 2006), neurophysio-

logical evidence suggests a sequential chain of neuronal activ-

ities as the underlying mechanism (Long et al., 2010). In rodents,

distinct behavioral timescales are represented by separable

neuronal populations (Jin and Costa, 2015; Moore et al., 2013),

which potentially provide a substrate for inter-timescale coordi-

nation. Rhythmic orofacial behaviors operating at different

frequencies appear to be coordinated by a hierarchical phase-

resetting mechanism, according to behavioral and anatomical

evidence (Moore et al., 2013). Still, it remains unclear how

different timescale neuronal dynamics interact to implement

hierarchical behavior.

Addressing this question necessitates fine-grained analysis of

both behavior and neuronal activity (Krakauer et al., 2017). We

therefore examinedC. elegans locomotion.C. elegans behaviors

include sub-second body-bends, seconds- to minutes-long mo-

tor states such as forward and reverse crawling, and longer-last-

ing states of exploration, exploitation, and quiescence. Detailed

analyses of postural dynamics have hinted at an underlying hier-

archical organization (Gomez-Marin et al., 2016). Physiological

studies, however, have primarily focused on single timescales.

For example, calcium imaging studies have described motor

neuron dynamics underlying the oscillatory gait (Gao et al.,

2018; Shen et al., 2016; Wen et al., 2012; Xu et al., 2018; Fouad

et al., 2018) and interneuron dynamics underlying forward/

reverse locomotion switches (Kato et al., 2015; Kawano et al.,

2011; Li et al., 2014; Piggott et al., 2011).

Here, we use quantitative behavior analysis, nervous-system-

wide single-cell-resolution functional imaging, and circuit manip-

ulations to reveal nested neuronal dynamics giving rise to a

behavioral hierarchy inC. elegans. At the uppermost hierarchical

level, an �0.05-Hz nervous-system-wide neuronal activity cycle

drives switches between forward and reverse crawling states
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).

mailto:manuel.zimmer@univie.ac.at
https://doi.org/10.1016/j.neuron.2019.10.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2019.10.037&domain=pdf
http://creativecommons.org/licenses/by/4.0/


1

24

5 10 15 20

Final propagation segment #

0

0.04

0.08

F
ra

ct
io

n

Head Tail

0.56

0.6

0 5
Time (seconds)

0

0.2

0.4

0.6

0.8

1 C
u

m
u

la
tive

 fra
ctio

n

Time (seconds)
0 2 4 6 8

5
10
15
20S

eg
m

en
t #

0

0.3V A
ngle (rad)

D
-0.3

DCBA

Head

Tail

E

Head-casts

0
Head-bend
angle (rad)

Prop-bend
phase (rad)

F

Ventral 
prop-bend
maximum

Dorsal
prop-bend
maximum

0

0

0

F R

D V

D V

~ 0.05 Hz

~ 0.5
Hz

~ 1
Hz

Propagated-
bends

Head-casts

Prop-bends

G

A

P
VD

Prop-
bends

Head-
casts

1

10

100

C
yc

le
 p

er
io

d 
(s

ec
on

ds
)

Prop-bend
phase (rad)

Fraction

Fwd/Rev
cycle

****

****
Head-
casts

Propagated-
bends

Dorsal / ventral 

Fwd/
rev 

cycle

0.2 0.4

0.3

-0.3

0.3 m
m

0 0.4
V

Angle (rad)

D
-0.4

S
egm

ent #

3 2

1 2
Dorsal head-casts
Ventral head-casts
All phases (control)

0.1

V

D

Figure 1. A Multi-timescale Behavioral Hierarchy

(A) Body angle measurement. A, anterior; P, posterior; V, ventral; D, dorsal.

(B) Lower: example posture time series kymogram. Head-bend propagations traced by black lines. Upper: worm images with propagated-bends (filled arrows)

and head-casts (open arrows) indicated. Scale bar, 0.4 mm.

(C) Fractional and cumulative distributions of each head bend’s most posterior propagation segment. Dotted line indicates cutoff used to distinguish head casts

and propagated bends in subsequent quantifications. n = 45,129 head bends pooled from 28 assays, �20 animals per assay.

(D) Violin plot showing median and 1st and 3rd quartiles of cycle periods for forward/reverse (forward + reverse bout duration, n = 1,259), propagated-bend

(n = 25,817), and head-cast cycles (n = 341) pooled from 14 assays, �20 animals per assay. ****p < 0.0001, Mann-Whitney test.

(E) Example head-bend angle time series illustrating propagated-bend phase measurement. Red and blue dashed lines indicate initial head-cast phases,

quantified in (F).

(F) Fractional distributions of initial head-casts binned according to their propagated-bend oscillation phases. n = 427 dorsal and 194 ventral head-casts pooled

from 21 animals. p < 10�6 for both distributions, indicating the probability that each is drawn from the full data distribution shown in gray.

(G) Hierarchical model of behavior with approximate cycle frequencies.

See also Figure S1.
and also controls two faster neuronal oscillations, toggling them

between different dynamical states and functional roles. At the

intermediate hierarchical level, B-class motor neurons (B-MNs)

drive �0.5-Hz crawling undulations. At the lowest hierarchical

level, SMD motor neurons drive �1-Hz head-casts, which are

further nested within specific phases of the mid-level oscillation.

Crucially, by comparing neuronal activity in moving versus im-

mobilized animals, we show that these nested dynamics persist

in the absence of behavioral execution. Hierarchically nested

neuronal dynamics are therefore an intrinsic property of these

neurons and their circuit interactions.

RESULTS

AMulti-timescale Behavioral Hierarchy ofMotor Actions
To identify behaviors with relationships across timescales, we

video-tracked animals to measure motor programs and associ-

ated gaits.C. elegans switch stochastically between forward- or

reverse-directed crawling (Roberts et al., 2016); each of these

motor programs consists of alternating dorsal/ventral undula-

tory bends. During the predominant forward locomotion state,

bends originate in the head and propagate posteriorly. We
quantified 24 bend angles along the worm’s body (Figure 1A)

and traced each head bend’s propagation to its posterior-

most segment (Figures 1B and S1A). This revealed a bimodal

distribution, indicating two distinct types: one propagating

completely to the tail (henceforth ‘‘propagated-bends’’) and

another terminating anterior to the mid-body (henceforth

‘‘head-casts’’) (Figures 1B and 1C). Several metrics suggested

that head-casts were a distinct class of actions, as opposed

to aborted propagated-bends (Figures S1B–S1D). Head-casts

were reminiscent of previously described ‘‘foraging’’ move-

ments of the nose (Huang et al., 2008). The exact definition of

foraging is ambiguous, and previous measures likely included

head-casts as well as faster, more anterior nose movements

(for discussion, see Yemini et al., 2013). Here, we rely on a

precise definition based on propagation and, therefore, use

‘‘head-casts’’ instead of ‘‘foraging.’’ Forward locomotion con-

sisted primarily of propagated-bends (Figure 1C) intermittently

superimposed with episodes of head-cast oscillations (Figures

S1A and S1E); when they did occur, head-cast oscillation cycles

were typically faster than propagated-bend ones (Figure 1D).

Together with forward/reverse locomotion switches, these

behaviors occurred on three distinct timescales (Figure 1D).
Neuron 105, 562–576, February 5, 2020 563



Nevertheless, these behaviors were considerably coupled.

Head casts were ventral- or dorsal-biased, depending on

whether the previous propagated-bend was ventral or dorsal

(Figures 1E, upper, and S1F). To investigate this further, we

calculated the phase of the propagated-bend cycle, with dorsal

– ventral – dorsal corresponding to 0 – 1p – 2p rad (Figure 1E,

lower). This revealed that head-cast episodeswere only initiated

at restricted phases (Figure 1F). This phase dependence, which

we term ‘‘phase-nesting,’’ suggests a brief window of opportu-

nity for head-casts within each propagated-bend cycle. Indeed,

head-casts preferentially occurred during the longest-duration

propagated-bend cycles, consistent with longer cycles having

wider windows of opportunity (Figures S1G–S1I). Alternatively,

head-cast occurrence could stall and, therefore, lengthen the

propagated-bend cycle, a possibility we examine below. Both

head-bend types occurred exclusively during forward locomo-

tion: during reversals, bends propagated from tail to head,

and no head-casts occurred (Figures S1J and S1K). Together,

these data suggest a hierarchical organization of behavior, in

which shorter-timescale behaviors are strictly constrained by

specific longer-timescale behavioral phases or states (Fig-

ure 1G). We next examined neuronal activities underlying these

behaviors.

A Nervous-System-wide Representation of the
Uppermost Hierarchical Level
In our previous work, we developed a single-cell-resolution,

whole-brain, Ca2+-imaging approach in immobilized animals

(Kato et al., 2015; Schrödel et al., 2013). Using principal-compo-

nent analysis (PCA), we reported a low-dimensional, brain-wide

activity cycle that dominates head ganglia. This included de-

scending (and other) interneurons, which, in freely moving ani-

mals, were strictly active during forward or reverse locomotion

(Kato et al., 2015), the uppermost level of our hierarchical model.

These same neurons show coordinated dynamics during immo-

bilization, with relationships to each other as expected from their

behavior correlations (i.e., forward-active neurons were posi-

tively correlated with each other and negatively correlated with

reverse-active neurons). Therefore, specific neuronal activity

patterns in immobilized worms can be ascribed to forward or

reverse motor command states (Kato et al., 2015).

Here, we expanded this approach beyond head ganglia to the

entire nervous system, including ventral nerve cord (VNC, con-

taining body motor neurons) and tail ganglia (n = 5; Figures

2A–2D and S2A; Video S1). Using PCA, we found low-dimen-

sional dynamics strikingly similar to those restricted to head

ganglia (Figures 2C and S2B). Notably, interneuron and motor

neuron activities were equally well represented in this low-

dimensional PCA space (Figure 2E), and both neuron classes

showed strong modulations by forward/reverse command state

(Figure S2C). Network activity corresponding to motor com-

mands therefore extends from head ganglia to the motor periph-

ery (Figure 2D), consistent with previous work showing pre-

motor interneuron control of VNC motor neurons (Kawano

et al., 2011; Xu et al., 2018). The AVB (Xu et al., 2018) and AVA

(Kawano et al., 2011) pre-motor interneurons have been shown

to exert powerful control over VNC activity and are likely respon-

sible for connecting interneuron and motor neuron population
564 Neuron 105, 562–576, February 5, 2020
dynamics into one coordinated signal. Accordingly, our results

show that this signal permeates many VNC neurons even in

completely immobilized animals (Figures 2E and S2C). In conclu-

sion, a long-timescale, nervous-system-wide neuronal activity

cycle underlies the uppermost hierarchical level.

Identification of Candidate CPG Circuits for Lower
Hierarchical Levels
PCA is sensitive to global correlations in time series data but less

so to local and transient neuronal activity fluctuations. Therefore,

we used additional approaches to screen our datasets for

shorter-timescale activities underlying lower hierarchical levels.

Rhythmic behaviors such as head bending are typically driven

by central pattern generators (CPGs), neurons or circuits that

can generate motor-pattern-like activity without any external

feedback (Kiehn, 2011; Marder and Bucher, 2001). As our immo-

bilized worm recordings lack dynamic proprioceptive inputs,

they are particularly well suited for identifying CPG candidates.

Behavioral studies have implicated B-MNs, along with an un-

known head neuron class, as potential CPGs for forward loco-

motion (Fouad et al., 2018; Xu et al., 2018). Eighteen B-MNs

distributed along the worm’s anterior-posterior axis synapse

locally onto either dorsal (for DB01-DB07 B-MNs) or ventral

(for VB01-VB11 B-MNs) muscle and are crucial for forward loco-

motion (Chalfie et al., 1985) (Figure 2A). Based on anatomical

features (STAR Methods), we were able to identify most individ-

ual B-MNs in our data. We indeed found shorter-timescale

fluctuations: some neuron classes, including certain B-MNs,

showed several Ca2+ peaks nested within single forward com-

mand states (Figure 3A). Most of these neurons rarely peaked

during reverse command states (Figure S2D). We focused on

rhythmically active neuron classes, which we define as those

with non-random inter-peak intervals (Figure 3A; STAR

Methods). Two of these were excitatory motor neuron classes

targeting head and neck muscle, making them top CPG candi-

dates: SMD neurons (dorsal-projecting SMDDL and SMDDR

and ventral-projecting SMDVL and SMDVR) and B-MNs DB01

and DB02 (Figures 2D and 3B). We hereafter refer to these

neuronal classes as ‘‘oscillators,’’ given their rhythmic activity

(Figures 3A and S3E–S3H).

To determine whether SMD and DB01/02 were part of larger

oscillator circuits, we performed an appropriate variant of

cross-correlation analysis: we calculated covariograms, which

are shuffle-corrected, peri-event time histograms of one neu-

ron’s Ca2+ peaks relative to another (Brody, 1999) (Figure 3C).

This analysis delineated three small oscillator circuits (high-

lighted in different colors in Figure 3C): (1) SMDD and

GABAergic ventral-projecting RMED head motor neurons oscil-

late in synchrony; (2) SMDV, dorsal-projecting RMEV, and the

VB01 B-MN oscillate in synchrony and antagonistically with the

SMDD oscillator (also see Hendricks et al., 2012; Shen et al.,

2016); and (3) DB01 and DB02 oscillate in synchrony with

weak correlations with the SMDV oscillator.

CPGs typically show both rhythm-generating (regularly

repeating) and pattern-generating (coordinated across neurons,

e.g., those controlling antagonistic muscles) activity (discussed

in Kiehn, 2011). SMDD/V oscillator antagonism is consistent

with both rhythm and pattern generation for antagonistic
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Figure 2. A Nervous-System-wide Representation of the Uppermost Hierarchical Level

(A) Worm schematic. Neurons investigated in subsequent panels are labeled.

(B–D) Example whole-nervous-system GCaMP6f recording. (B) Upper: motor command states inferred from neuronal activity (STAR Methods). Lower: fluo-

rescence time series of 129 neurons, sorted by correlation. (C) Low-dimensional representation of nervous-system-wide activity, from principal-component

analysis (PCA). Color key indicates motor command state inferred from neuronal activity (STAR Methods; arrowheads indicate directional flow). Coordinates

depict principal component (PC) axes orientations and% variance explained. (D) Activity traces of selected neurons. Scale bars on the right represent 0.5 DF/F0,

colored according to corresponding trace.

(E) Mean ± SEM correlation coefficient between neuronal activity traces and traces reconstructed using indicated top PCs. n = 5 datasets.

See also Figure S2 and Video S1.
dorsal/ventral head bending. In contrast, DB01/02 oscillations

showed positive correlations with VB01 activity (Figure 3C),

despite targeting opposing muscles. Other B-MNs also ex-
hibited rhythmic activity (Figure 3A), but we found no significant

coordination among them (Figure S2E). These data are consis-

tent with previous studies implicating B-MNs as distributed
Neuron 105, 562–576, February 5, 2020 565
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A B

Figure 4. SMDs and VNC Neurons Are Required for Head-Casts and Propagated-Bends, Respectively

(A) Frequencies as in Figure 3A for the indicated neurons in control, VNCACh-inhibited, and SMD-inhibited animals, pooled across paired neurons, and across

n = 5 (control, SMD::HisCl) or 4 (VNCACh::HisCl) recordings. *p < 0.05, **p < 0.01, ****p < 0.0001, Mann-Whitney test. ns, not significant. Boxplots show median,

interquartile, and range.

(B) Effects of SMD (n = 9), VNCACh (n = 6), and SMD+VNCACh (n = 6) inhibition on propagated-bends (upper) and head-casts (lower), mean ± SD. Each data point is

the mean of an experimental repeat with �20 animals each. **p < 0.01, ****p < 0.0001, Mann-Whitney test. ns, not significant.

See also Figure S4.
rhythm generators (Fouad et al., 2018), and they further suggest

that proprioceptive feedback (described for B-MNs inWen et al.,

2012; Xu et al., 2018) is required for B-MN pattern generation.

SMDs were also reported to be proprioceptive (Yeon et al.,

2018), presumably in addition to the activity we report in immo-

bilized animals. We suggest that proprioception is required for

both SMD and B-MN frequency entrainment, as we observed

a�10-fold reduction of frequency upon immobilization (compare

Figure 3A with head-bend frequencies in moving animals, shown

in 1D); such a reduction is consistent with CPG studies in other

species (Fox et al., 2006; Goulding, 2009). For the SMDs, we

confirmed that our measured activity frequencies were not

limited by our acquisition rate, using a separate set of single-

plane 50-Hz recordings (Figure S3). For other neurons, we

cannot exclude the possibility of faster dynamics not captured

by our 1–3 Hz volumetric recordings. In summary, in addition

to slow global dynamics, immobilized animal recordings also re-

vealed faster local dynamics, with the head motor neurons SMD

and DB01/02 exhibiting largely independent rhythmic activity.

SMDs and VNC Neurons Are Required for Head-Casts
and Propagated-Bends, Respectively
To interrogate SMD and DB function, we transiently inhibited

each using the histamine-gated chloride channel hisCl (Pokala

et al., 2014). We first sought to confirm the oscillators’ indepen-

dence in immobilized worms. Whole-brain recordings revealed

DB01/02 oscillations in the absence of SMD activity (albeit with

reduced DB01 frequency; Figure 4A). To examine SMD activity

in DB01/02-inhibited animals, we generated VNCACh::hisCl an-

imals, in which all B-MNs, including DB01/02, are inhibited,

among other cholinergic VNC neurons (no specific DB01/02 ge-

netic driver is available). Whole-brain imaging in VNCACh::hisCl
(C) Covariograms of SMD and DB with all coordinated neurons. All identified ne

reference neuron are shown. Plots show relative frequencies of Ca2+ peaks of n

higher/lower correlation than estimated by chance. Opaque plots differ significan

denote significant positive relationships consistent within neuron classes. ‘‘(–)’’ d

See also Figures S2 and S3.
animals showed increased SMDD and decreased SMDV oscil-

lation frequencies (Figure 4A). This differential effect could be

explained by inhibition of VB01, which is the only B-MN

showing activity tightly coupled to SMD activity (positively

with SMDV and negatively with SMDD; Figure 3C) and the

only B-MN synaptically connected to the SMDs (a gap junction

to SMDVR). Regardless of the SMDD/V balance, these data

show that SMD and DB01/02 can operate as independent

oscillators.

We next examined how oscillator inhibition affects locomo-

tion. SMD::hisCl animals exhibited normal propagated-bend

frequency but largely reduced head-cast frequency (Figures

4B, S4A, and S4B). VNCACh::hisCl animals exhibited reduced

propagated-bend frequency and increased head-cast fre-

quency (Figures 4B, S4A, and S4B). Combining VNCACh::hisCl

and SMD::hisCl rendered animals almost completely immobile,

with abnormally non-rhythmic head-cast-like bends (Figures 4B

and S4A–S4E). In these animals, 11 head motor neuron classes

were not targeted via hisCl but could not compensate for SMD

and VNCACh inhibition, suggesting an especially prominent

role for SMDs and VNCACh neurons. Altogether, these data sug-

gest that the SMD and B-MNs are independently required for

head-casts and propagated-bends, respectively.

These behavioral experiments also provided support for two

predictions of our hierarchy model. First, reduced head-cast fre-

quency in SMD::hisCl animals did not result in shorter propa-

gated-bend cycle periods (Figures S4C and S4D), suggesting

that head-cast occurrence does not stall or lengthen the propa-

gated-bend cycle. Second, VNCACh::hisCl showed a reciprocal

effect on propagated-bends and head-casts (Figure 4B), consis-

tent with longer propagated-bend cycles (Figure S4D) permitting

wider windows of opportunity for head-casts. By contrast,
urons were tested, but only those with significant correlation with at least one

eurons in columns triggered to those in rows. Positive/negative values show

tly from random surrogate distributions (p values in Table S3). Colored borders

enotes negative relationships.
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Figure 5. Hierarchy Level I and II Interaction: SMD Neurons Are Multi-functional

(A) Hierarchy levels investigated.

(B and C) Example DB02 (B) and SMD (C) Ca2+-imaging in moving animals. DR/R0 = normalized GCaMP/mCherry ratio. Lower: posture kymograms, black in-

dicates missing data. Dotted vertical lines: unilateral SMDD- or SMDV-only oscillations.

(D–G) Fractional distributions of DB02 (D and E) or SMD (F and G) Ca2+ peaks binned by head-bend phase during forward (D and F) or reverse (E and G)

locomotion. n = 746 (D), 35 (E), 478 (F, SMDD), 389 (F, SMDV), 150 (G, SMDD), and 158 (G, SMDV) peaks pooled across 11 (SMD) and 10 (DB02) animals. p < 10�6

for all distributions except SMDV (p = 3 3 10�6) and DB02 (ns, p = 0.26) during reverse locomotion, indicating the probability that distributions are drawn

randomly. Probability that each neuron’s reversal distribution was drawn from its respective forward distributions: p < 10�6 (SMDD and SMDV) and

0.0014 (DB02).

(H) Frequency (upper) and average amplitude (lower) of detected activity peaks. **p < 0.01, ***p% 0.001, Wilcoxon matched-pairs signed rank test. n = 11 (SMD)

and n = 10 (DB02) animals.

(I) Peak head-bend amplitudes in SMD::hisCl, mean ± SD. ****p < 0.0001, Mann-Whitney test; ns, not significant.

(J) Reversal duration in SMD::hisCl, mean ± SD. ****p < 0.0001, Mann-Whitney test. Each data point in (I) and (J) is the mean of an experimental repeat (n = 9) with

�20 animals each.

(K) Reversal command duration from immobilized head ganglia imaging, mean ± SD. Each data point is the mean from one animal, n = 5 each condition.

**p < 0.01, Mann-Whitney test.

See also Figure S5 and Video S2.
reduced head casting in SMD::hisCl animals did not affect prop-

agated-bend frequency (Figure 4B), consistent with a top-down

effect of the longer-timescale behavior on the shorter-timescale

one but not vice versa.

Hierarchy Level I and II Interaction: SMD Neurons Are
Multi-functional
To determine how these circuits drive hierarchical behaviors, we

performed Ca2+ imaging of SMDs and DB02 in freely moving an-
568 Neuron 105, 562–576, February 5, 2020
imals (Figures 5B and 5C; Video S2). Fourier analysis revealed

peaks in neuronal activity power spectra overlapping with peaks

in head-bend angle power spectra, as expected for motor neu-

rons targeting head muscle (Figures S5A–S5C). These data

also confirmed that SMD neurons’ activities fluctuated about

an order of magnitude faster in moving versus immobilized

animals (compare Figures S5A and S5B to S3E–S3H). We next

asked how the uppermost hierarchical level impacts faster-

timescale activities (Figure 5A). As both SMDs and DB02 target
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Figure 6. AIB Interneurons Orchestrate Upper-Level SMD Switch

(A) Experiment design and hypothesis.

(B) Frequency (upper) and average amplitude (lower; DR/R0 = normalized GCaMP/mCherry ratio) of SMD activity peaks in AIB::hisCl freely moving animals, ±

histamine. ns, not significant; *p < 0.05, **p < 0.01, ***p% 0.001, Wilcoxon matched-pairs signed rank test. n = 14 (�histamine) and n = 15 (+histamine) animals.

(C) Summary of investigated neuronal relationships.

See also Figure S6 and Video S2.
headmuscle, we examined neuronal activity relative to the head-

bend oscillation (corresponding to hierarchy level II). During for-

ward locomotion, SMDD and DB02 peaked during dorsal bends,

SMDV peaked during ventral bends, and each neuron peaked

during nearly every head-bend cycle (Figures 5D, 5F, and

S5D). During reverse locomotion, DB02 and SMD activities

were altered in different ways. DB02 activity was largely

reduced, showing small peaks with no correlation to head

bending (Figures 5B, 5E, 5H, and S5D). SMDs peaked at altered

head-bend phases (Figure 5G) with less reliability (Figure S5D)

and with lower frequency and amplitude (Figure 5H) compared

to forward states. These altered SMD activity patterns suggest

altered SMD function during reversals. Consistent with this

idea, SMD inhibition caused reduced head-bend amplitude

only during forward locomotion (Figure 5I).

IfSMDactivityduring reversalsdoesnotpromoteheadbending,

what function does it serve? We reliably observed SMD Ca2+

peaks at reverse-to-forward transitions (FigureS5E). These transi-

tions are typically accompanied by reorientation turns (Donnelly

et al., 2013;Gray et al., 2005); the amplitude of these post-reversal

turns correlatedwith SMDCa2+-peak amplitude (Figure S5F), with

mutually exclusive SMDV activity during ventral turns and SMDD

activity during dorsal turns (Figure S5E). We therefore hypothe-

sized that SMD reversal activity increases reverse-to-forward

transition probability and promotes post-reversal turn amplitude.

Indeed, SMD::hisCl animals showed increased reversal duration

(Figures 5J and S5G) and lacked large-amplitude post-reversal

turns (FiguresS5H–S5J). SMDs therefore switch functiondepend-

ing on the long-timescale forward/reverse switch: during forward

locomotion, they act as motor neurons, increasing head-bend

amplitude and post-reversal turn amplitude, and driving head-

casts; during reverse locomotion, in contrast, they do not affect

head bending but rather promote state termination (Figure 5J).

The latter suggests an interneuron-like role, consistent with

SMDs synapsing onto interneurons in addition to their neuromus-

cular synapses (White et al., 1986).

We next asked whether these hierarchical relationships arise

from intrinsic circuit properties or from proprioceptive feedback.

To distinguish these possibilities, we examined SMD and DB
activity during forward versus reverse command state in immobi-

lized animals. As in behaving animals,mutually exclusiveSMDD/V

peaks were coincident with reversal command state termination

(Figure S5K). Indeed, SMD::hisCl animals showed increased

reverse command state durations (Figure 5K), confirming that

this SMD function persists in the absence of behavior. Further,

DB02 frequency and peak amplitude, SMDDpeak amplitude (Fig-

ure S5L), and DB02 and SMD mean activity levels (Figure S2C)

were reduced during reverse command states (Figure S5L), as

in moving animals (Figure 5H). In conclusion, SMD and DB oscil-

lations are hierarchically nestedwithin the slower forward/reverse

command cycle via circuit interactions.

We next sought to determine which neurons trigger the switch

in SMD activity pattern. Among SMD’s pre-synaptic partners, AIB

and RIM stood out as candidates, as both neurons are more

active during reverse compared to forward locomotion (Gordus

et al., 2015; Kato et al., 2015; Laurent et al., 2015; Luo et al.,

2014; Piggott et al., 2011). We therefore hypothesized that AIB

and/or RIM inhibit SMD activity during reversals (Figure 6A). We

found that AIB inhibition abolished the forward/reverse locomo-

tion modulation of SMDD frequency, SMDV frequency, and

SMDD amplitude (Figure 6B). These results suggest that AIB is

crucial for switching SMD neurons between high-activity and

low-activity states (Figure 6C). Because RIM::hisCl animals

lacked reversals, we took a genetic approach to RIM manipula-

tion. Several studies have shown that RIM signals via tyramine

to affect head oscillations and reversal behavior (Alkema et al.,

2005; Donnelly et al., 2013; Pirri et al., 2009). We found a specific

role for tyramine in SMDD frequency only (Figure S6). In summary,

we found a major (AIB) and minor (tyramine, likely from RIM) role

for two SMD inputs in switching SMD activity states at the upper-

most hierarchy level. These findings are consistent with the hier-

archy’s implementation via circuit interactions.

Hierarchy Level II and III Interaction: Neuronal Phase
Nesting
We next examined neuronal activity during the different head-

bend types (Figure 7A). All three neurons showed oscillations

synchronized with propagated-bends: DB02 and SMDD were
Neuron 105, 562–576, February 5, 2020 569
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Figure 7. Hierarchy Level II and III Interaction: Phase Nesting of SMD Activity

(A) Hierarchy levels investigated.

(B–E) Trigger-averaged kymograms (lower) and neuronal activity traces (upper;DR/R0 = normalized GCaMP/mCherry ratio) fromDB02 (B and D) and SMD (C and

E) imaging, aligned to either propagated-bends without subsequent head-casts (B and C) or initial head-casts (D and E). Left to right, n = 669, 680, 303, and 101

(B and D) and n = 377, 360, 178, and 119 (C and E). In (E), activity peaks during propagated-bends (filled arrowheads) and head-casts (open arrowheads) denoted.

(F) Example SMD activity time series illustrating SMD alternation phase measurement. Red and blue dashed lines indicate unilateral SMDD-only or SMDV-only

oscillations, quantified in (G).

(G and H) Fractional distributions of unilateral SMDD-only or SMDV-only oscillations binned according to SMD alternation cycle phase, in freely moving (G) or

immobilized (H) animals. n = 196 (G, SMDD), 147 (G, SMDV), 57 (H, SMDD), and 23 (H, SMDV). p % 10�6 for each SMD distribution in (G) and (H) indicates the

probability that distributions are drawn randomly from the full data distribution shown in gray. Data in (B)–(E) and (G) pooled across 11 (SMD) and 10 (DB02)

animals. Data in (H) pooled from 13 animals.

(I) Summary of investigated neuronal relationships.

See also Figure S7.
active during dorsal propagated-bends, and SMDV was active

during ventral propagated-bends (Figures 7B and 7C). SMDD

and SMDV therefore showed alternating activity peaks with

alternating dorsal/ventral propagated-bends (Figure 7C). During

head-casts, DB02 did not show activity fluctuations beyond

those during propagated-bends (Figures 7B and 7D; excepting

a minority of especially posterior propagating head-casts, Fig-

ure S7A). In contrast, SMDs consistently showed oscillations

during head-casts superimposed onto their propagated-bend
570 Neuron 105, 562–576, February 5, 2020
activity (Figure 7E). In contrast to SMD’s alternating activities

during propagated-bends, SMD head-cast oscillations were

strictly unilateral: SMDD oscillated during dorsal head-casts

while SMDV remained inactive, and vice versa during ventral

head-casts (Figures 7E and S7B–S7D; dotted lines in Figure 5C).

SMDs therefore exhibited distinct activity signatures for different

behaviors: SMDD/SMDV alternations during propagated-bends

and unilateral SMDD-only or SMDV-only oscillations during

head-casts.
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Figure 8. A Hierarchical Control Mechanism for Behavioral Flexibility

(A) Neuron classes (F, forward-active; R, reverse-active) underlying each behavior.

(B) Model traces (upper) and corresponding behavioral and neuronal hierarchical states (lower).

(C) RIB inhibition model: longer propagated-bend cycle period results in increased head-cast frequency.

(D and E) Propagated-bend cycle period (D) and head-cast frequency (E) in RIB::hisCl animals, mean ± SD n = 8 assays each. ***p < 0.001, Mann-Whitney test.

(F) RIB activation model: shorter propagated-bend cycle period results in decreased head-cast frequency.

(G and H) Propagated-bend cycle period (G) and head-cast frequency (H) in RIB::Chrimson animals during yellow light exposure. n = 8 assays each. **p < 0.01,

***p < 0.001, Mann-Whitney test.

(I) Representative O2 downshift kymogram.

(legend continued on next page)
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We next asked whether these SMD activity signatures were

phase-nested like their co-occurring behaviors. We quantified

the phase of the SMDD/SMDV alternation cycle with SMDD

peak – SMDV peak – SMDD peak corresponding to 0 – 1 – 2p

rad (Figure 7F). This revealed that unilateral SMD oscillations

were initiated at restricted phases (Figure 7G, compare with Fig-

ure 1F). This suggests that phase-nested SMD activity may be

causal for phase-nested behavior; if so, phase-nested SMD

activity should persist in the absence of behavior. Indeed, in im-

mobilized animal recordings, SMD activity showed the same

phase-nested relationship (Figure 7H). Further, these recordings

revealed SMD activity relationships that likely underlie the pro-

posed window of opportunity (Figures S7E and S7F, compare

with S1H). The preservation of these dynamical relationships in

immobilized animals is especially striking given that SMD activ-

ities fluctuate about one order of magnitude slower in immobi-

lized versus moving animals (compare Figures S3E–S3H with

S5A and S5B). Taken together, our data indicate that phase-

nested neuronal dynamics are the cause, rather than conse-

quence, of phase-nested behaviors (Figure 7I). Nested neuronal

activity patterns are therefore a repeated dynamical motif of the

C. elegans nervous system, which together constitute a hierar-

chical organization of neuronal activity and behavior across three

timescales (Figures 8A and 8B).

SMD-Head-Bend Synchrony Is Independent of RIA
and GABA
SMD activity and head bending are strongly synchronized during

propagated-bends in freely moving animals (Figures 5F and 7C),

yet propagated-bends are largely unaffected by SMD inhibition

(Figures 4B and S4A–S4D). The SMDs therefore likely act as

followers during this behavior (Figure 7I), which our data suggest

is driven byB-MNs (Figures 4B and S4A–S4D). In immobilized an-

imals, however, DB01/02 showed no correlationwith SMDD, indi-

cating that other neuronal inputs, or proprioception, might entrain

SMD oscillations with both B-MNs and propagated-bends.

We therefore examined two of SMD’s major inputs, RIA and

RME. RIA is SMD’s most prominent presynaptic partner, and

previous studies have shown a potent effect of RIA on SMD ac-

tivity (Hendricks et al., 2012; Liu et al., 2018). We tested animals

expressing tetanus toxin in RIA (Hendricks et al., 2012; Liu et al.,

2018), thus blocking synaptic release, as well as RIA::hisCl ani-

mals (validated via imaging experiments, data not shown), and

found no effect on the relationship between SMD activity and

head bending (Figures S7G and S7H). RME activity showed

strong, lateralized correlations with SMD activity in immobilized

animals (Figure 3C) and has also been shown to functionally

impact SMD activity via GABA signaling (Shen et al., 2016).

unc-25 mutants lacking GABA synthesis showed no defect in

the relationship between SMD activity and head bending (Fig-

ure S7I). We therefore suggest that proprioception plays a prom-
(J and K) Propagated-bend cycle period (J) and head-cast frequency (K) 30 s pre-

matched-pairs signed rank test.

(L) Example kymogram during dwelling to roaming switch.

(M and N) Propagated-bend cycle period (M) and head-cast frequency (N) in dwel

signed rank test. All data points show the mean of an experiment repeat with �2

See also Figure S8 and Videos S3 and S4.
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inent role in synchronizing SMD activity with propagated bends.

Indeed, proprioception has been shown to modulate SMD activ-

ity (Yeon et al., 2018). Another possibility is that the B-MNs

directly drive lateralized SMD activity in moving animals:

B-MNs have also been shown to be proprioceptive (Wen et al.,

2012) and are synaptically coupled to the SMDs via VB01.

A Hierarchical Control Mechanism for Behavioral
Flexibility
Phase nesting implies a mechanism for behavioral regulation:

head-cast occurrence may be controlled by manipulating the

propagated-bend oscillation speed, thereby widening or nar-

rowing the head-cast window of opportunity. Propagated-

bend oscillation speed correlated strongly with locomotion

speed (Figure S8A); we therefore manipulated the RIB inter-

neuron, a forward-active neuron previously implicated in loco-

motion speed control (Kato et al., 2015; Li et al., 2014). Indeed,

RIB inhibition slowed the propagated-bend cycle and, consis-

tent with our model, increased head casting (Figures 8C–8E).

Conversely, optogenetic RIB activation accelerated the propa-

gated-bend cycle and decreased head casting (Figures 8F–

8H). To determine whether this antagonistic regulation occurs

in more naturalistic conditions, we examined behaviors involving

locomotion speed regulation. Off food, animals exposed to

ambient O2 downshifts slow their locomotion (Zimmer et al.,

2009), presumably to explore locally (Hums et al., 2016). Upon

O2 downshift, slowed propagated-bend cycles were coupled

with increased head casting (Figures 8I–8K and S8B; Video

S3). On food, animals switch spontaneously between low-speed

exploitative dwelling and high-speed explorative roaming

states (Fujiwara et al., 2002). We found that roaming animals ex-

hibited faster propagated-bend cycles and rarely head-casted

compared to dwelling animals (Figures 8L–N, S8C, and S8D;

Video S4). These results suggest context-dependent functions

for head-casts, serving either exploration (off food) or exploita-

tion (on food). They further implicate phase nesting as a mecha-

nism for controlling behavioral output downstream of both

sensory neurons and internal state regulators.

DISCUSSION

Here, we showed that nested neuronal dynamics coordinate

different timescale behaviors into a behavioral hierarchy in

C. elegans. Our results conceptually reveal an organizational

principle in which upper-level behavioral programs are repre-

sented by slow global dynamics spread across many neurons,

while lower-level behaviors are represented by fast local dy-

namics in a few multi-functional neurons. Persistent phases of

neuronal activity driving higher-level behaviors gate the occur-

rence of faster neuronal activity fluctuations driving lower-level

behaviors. As a consequence, at lower hierarchy levels, neurons
and post-O2 downshift. n = 14 assays. ***p < 0.001, ****p% 0.0001, Wilcoxon

ling or roaming animals. n = 19 assays. ****p < 0.0001, Wilcoxon matched-pairs

0 animals each.



show dynamics that span multiple timescales incorporating

those at the respective upper levels. Further, faster lower-level

signals were exclusive to peripheral (i.e., motor) neurons, while

slower upper-level signals permeated both central and periph-

eral neurons.

SMD activity changes span all three timescales. They show

fast head-cast-driving oscillations (level III) superimposed onto

a slower propagated-bend-correlated activity oscillation shared

with the B-MN population (level II), which enables phase-nested

behaviors (Figure 7). Upon switching to reverse locomotion at the

interneuron level (level I), B-MNs become inactive, while SMDs

change their activity patterns and execute completely different

functions. SMDs are therefore highly multi-functional, executing

both motor- and interneuron-like functions, in a manner strictly

controlled by the hierarchical organization. Because neurons

like the SMDs play roles at multiple hierarchical levels, our find-

ings are best described as a hierarchy of neuronal dynamical

states (Figure 8B), with each state consisting of particular activity

patterns across many neurons, as opposed to a hierarchy in

which individual neurons occupy distinct states and levels.

Some of the hierarchical relationships we describe can be

straightforwardly linked to the worm’s known synaptic connec-

tivity, such as descending interneuron control of motor neuron

networks (Kawano et al., 2011; Xu et al., 2018). Other relation-

ships, however, can be only partially explained by connectivity:

while mutual inhibition between SMDD and SMDV could result

from direct synapses between the two, phase nesting is a

dynamical relationship that could be independent of connectiv-

ity. We nevertheless found that hierarchical nesting is a property

of circuit interactions rather than feedback from proprioception

or behavioral execution, as we could recapitulate nearly all of

the nested relationships in paralyzed worms. Crucially, this indi-

cates that the nervous system organizes its activities hierar-

chically, independent of behavior, and hierarchical behavior is

inherited from this organization.

The hierarchy we describe (Figure 8A) is a rigid framework in

which specific lower-level behaviors may only be accessed via

switches at upper levels. For example, SMDV never exhibited

head-cast activity during dorsal propagated-bends (when

DB02 and SMDDwere active); during this state, low-level ventral

head-castsmay only be executed by first switching themid-level

phase to ventral. This feature is specific to non-overlapping hier-

archies, in which no lower-level state is connected to multiple

upper-level states (Figure S8E) (Dawkins, 1976). This rigid frame-

work is, however, accessible to additional neuronal control, via

either sensory input or behavioral state (Figures 8I–8N); both of

these can modulate the crawling-phase velocity of the animal

and therefore the window of opportunity for head casting. Given

the ubiquity of neuronal activity oscillations as well as hierar-

chically organized behavior, the circuit interactions and control

principles we describe may be relevant for other species.

We also examined an even longer timescale of behavior above

the forward-reverse switch: roaming and dwelling behavioral

states. In contrast to the strict, all-or-none relationships of the

motor hierarchy, actions within roaming and dwelling are not

exclusive to those states but rather show differences in fre-

quency: dwelling exhibits high frequencies of forward-reverse

transitions and head-casts, while roaming consists of long
stretches of propagated-bend forward movement with low

head-cast and reversal frequencies (Figures 8I–8N; Gallagher

et al., 2013). We therefore suggest that such longer-timescale

behavioral states, which rely on neuromodulation (Ben Arous

et al., 2009; Flavell et al., 2013), are best described by a less

restrictive overlapping hierarchical model, in which lower-level

statesmay be shared by different upper-level states (Figure S8E;

Dawkins, 1976). Tinbergen’s non-overlapping hierarchical model

for stickleback behavior included longer-lasting states typically

controlled by neuromodulators, such as a reproductive instinct

(Tinbergen, 1951). The non-overlapping hierarchy we describe

(Figure 8A) is more in line with recent studies describing hierar-

chies at the level of motor actions (Berman et al., 2016; Duister-

mars et al., 2018; Glaze and Troyer, 2006; Gomez-Marin et al.,

2016; Marques et al., 2018; Wiltschko et al., 2015). A primary

benefit of hierarchical behavior may be to coordinate the

activities of motor neurons that target overlapping body parts,

in order to prevent interfering actions. In contrast to the rigid

framework studied here, longer-lasting behavioral states could

gain flexibility by re-utilizing a combinatorial set of actions.

The strict, nested relationships we uncovered bear striking

resemblance to neuronal dynamics underlying multi-timescale

rodent behaviors. For example, CPGs driving whisking and

breathing appear to interact in a hierarchical manner: breathing

resets the whisking phase, but not vice versa, and a unidirec-

tional anatomical pathway from the breathing CPG to the whisk-

ing CPG has been described (Moore et al., 2013). Such a phase-

resetting mechanism may also explain the impact of B-MNs on

SMD activity, whereby B-MN oscillations may drive the SMDs

into particular phases that restrict their unilateral oscillation

and therefore head-casts. Further, basal ganglia circuits in

mice show independent coding of different timescales during

learned action sequences (Jin et al., 2014), suggesting a hierar-

chical ‘‘chunking’’ with theoretical advantages compared to se-

rial sequencing (Jin and Costa, 2015). Our study demonstrates

how circuits acting on different timescales can interact to imple-

ment hierarchical behavior and could therefore provide a starting

point to search for similar circuit interactions in other organisms.

The motor neuron dynamics showed a strong dependence on

oscillation phase (Figures 7G and 7H). Oscillation phase is

crucially important for the effect of motor neurons during insect

locomotion (Fayyazuddin and Dickinson, 1999; Sponberg and

Daniel, 2012) and has been proposed to act as a window for inte-

grating inputs in flies (Gupta et al., 2016) and mammals (Buzsáki

and Draguhn, 2004; Yuste et al., 2005). While forward- and

reverse-state switches in C. elegans appear to be stochastic

rather than oscillatory (Roberts et al., 2016), non-oscillatory phase

coding has been demonstrated in the bat (Eliav et al., 2018). It has

also been suggested that CPG circuits may foretell principles of

cortical circuits (Yuste et al., 2005). Throughout the mammalian

brain, longer-timescale oscillations spread across larger neuronal

populations influencemore local, shorter-timescale oscillations in

a hierarchical manner (Buzsáki et al., 2013). Coupling between

these nested oscillations could serve myriad functions (Hyafil

et al., 2015); for example, the widening and narrowing of an

alpha-oscillation window of opportunity has been proposed to

enable gamma-oscillatory communication between neuronal

populations (Hahn et al., 2019). Further, comprehension of
Neuron 105, 562–576, February 5, 2020 573



speech, a naturally hierarchical stimulus, involves the emergence

of neuronal dynamics across timescales, with spatially disso-

ciable representations for distinct frequencies (Ding et al.,

2016). Our work demonstrates that such hierarchically nested

dynamics can indeed organize neuronal activity patterns, and,

consequently, animal behavior, across timescales.

In conclusion, nested neuronal activity patterns implement

a three-level hierarchy of behavior across timescales in

C. elegans. Neuronal activity dynamics on different timescales

are ubiquitous in neuroscience; we therefore speculate that

such hierarchically nested activity patterns may be a common

mechanism for organizing and regulating neuronal dynamics

across timescales.
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Kato, S., Kaplan, H.S., Schrödel, T., Skora, S., Lindsay, T.H., Yemini, E.,

Lockery, S., and Zimmer, M. (2015). Global brain dynamics embed the motor

command sequence ofCaenorhabditis elegans. Cell 163, 656–669, https://doi.

org/10.1016/j.cell.2015.09.034.

Kawano, T., Po, M.D., Gao, S., Leung, G., Ryu, W.S., and Zhen, M. (2011). An

imbalancing act: gap junctions reduce the backward motor circuit activity to

bias C. elegans for forward locomotion. Neuron 72, 572–586, https://doi.org/

10.1016/j.neuron.2011.09.005.

Kiehn, O. (2011). Development and functional organization of spinal locomotor

circuits. Curr. Opin. Neurobiol. 21, 100–109, https://doi.org/10.1016/j.conb.

2010.09.004.

Kim, K., and Li, C. (2004). Expression and regulation of an FMRFamide-related

neuropeptide gene family in Caenorhabditis elegans. J. Comp. Neurol. 475,

540–550, https://doi.org/10.1002/cne.20189.

Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho,

Y.K., Morimoto, T.K., Chuong, A.S., Carpenter, E.J., Tian, Z., et al. (2014).

Independent optical excitation of distinct neural populations. Nat. Methods

11, 338–346, https://doi.org/10.1038/nmeth.2836.

Krakauer, J.W., Ghazanfar, A.A., Gomez-Marin, A., MacIver, M.A., and

Poeppel, D. (2017). Neuroscience needs behavior: correcting a reductionist

bias. Neuron 93, 480–490, https://doi.org/10.1016/j.neuron.2016.12.041.

Laurent, P., Soltesz, Z., Nelson, G.M., Chen, C., Arellano-Carbajal, F., Levy, E.,

and de Bono, M. (2015). Decoding a neural circuit controlling global animal

state in C. elegans. eLife 4, e1004156, https://doi.org/10.7554/eLife.04241.

Li, Z., Liu, J., Zheng, M., and Xu, X.Z.S. (2014). Encoding of both analog- and

digital-like behavioral outputs by one C. elegans interneuron. Cell 159,

751–765, https://doi.org/10.1016/j.cell.2014.09.056.

Liu, J.,Ward, A., Gao, J., Dong, Y., Nishio, N., Inada, H., Kang, L., Yu, Y., Ma, D.,

Xu, T., et al. (2010).C.elegansphototransduction requiresaGprotein-dependent
Neuron 105, 562–576, February 5, 2020 575

http://refhub.elsevier.com/S0896-6273(19)30932-8/sref17
http://refhub.elsevier.com/S0896-6273(19)30932-8/sref17
http://refhub.elsevier.com/S0896-6273(19)30932-8/sref17
https://doi.org/10.1038/nn.4186
https://doi.org/10.1371/journal.pbio.1001529
https://doi.org/10.1016/j.neuron.2018.10.027
https://doi.org/10.1016/j.cell.2018.09.017
https://doi.org/10.1016/j.cell.2018.09.017
https://doi.org/10.1371/journal.pone.0024666
https://doi.org/10.1152/jn.1999.82.4.1916
https://doi.org/10.1152/jn.1999.82.4.1916
https://doi.org/10.1016/j.cell.2013.08.001
https://doi.org/10.1016/j.cell.2013.08.001
https://doi.org/10.7554/eLife.29913
https://doi.org/10.1523/JNEUROSCI.4749-05.2006
https://doi.org/10.1016/S0896-6273(02)01093-0
https://doi.org/10.1016/S0896-6273(02)01093-0
https://doi.org/10.1371/journal.pone.0059865
https://doi.org/10.7554/eLife.29915
https://doi.org/10.7554/eLife.29915
https://doi.org/10.7554/eLife.17686
https://doi.org/10.7554/eLife.17686
https://doi.org/10.1523/JNEUROSCI.3387-05.2006
https://doi.org/10.1523/JNEUROSCI.3387-05.2006
https://doi.org/10.1098/rsif.2016.0466
https://doi.org/10.1016/j.cell.2015.02.018
https://doi.org/10.1038/nrn2608
https://doi.org/10.1038/nrn2608
https://doi.org/10.1073/pnas.0409009101
https://doi.org/10.1073/pnas.0409009101
https://doi.org/10.1038/ncomms13808
https://doi.org/10.1038/s41583-018-0094-0
https://doi.org/10.1016/j.gep.2010.10.008
https://doi.org/10.1038/nature11081
https://doi.org/10.1016/j.jneumeth.2008.01.027
https://doi.org/10.7554/eLife.14116
https://doi.org/10.1016/j.tins.2015.09.001
https://doi.org/10.1016/j.conb.2015.06.011
https://doi.org/10.1016/j.conb.2015.06.011
https://doi.org/10.1038/nn.3632
https://doi.org/10.1016/j.cell.2015.09.034
https://doi.org/10.1016/j.cell.2015.09.034
https://doi.org/10.1016/j.neuron.2011.09.005
https://doi.org/10.1016/j.neuron.2011.09.005
https://doi.org/10.1016/j.conb.2010.09.004
https://doi.org/10.1016/j.conb.2010.09.004
https://doi.org/10.1002/cne.20189
https://doi.org/10.1038/nmeth.2836
https://doi.org/10.1016/j.neuron.2016.12.041
https://doi.org/10.7554/eLife.04241
https://doi.org/10.1016/j.cell.2014.09.056


cGMP pathway and a taste receptor homolog. Nat. Neurosci. 13, 715–722,

https://doi.org/10.1038/nn.2540.

Liu, H., Yang, W., Wu, T., Duan, F., Soucy, E., Jin, X., and Zhang, Y. (2018).

Cholinergic sensorimotor integration regulates olfactory steering. Neuron 97,

390–405.e3, https://doi.org/10.1016/j.neuron.2017.12.003.

Long, M.A., Jin, D.Z., and Fee, M.S. (2010). Support for a synaptic chain model

of neuronal sequence generation. Nature 468, 394–399, https://doi.org/10.

1038/nature09514.

Luo, L., Wen, Q., Ren, J., Hendricks, M., Gershow, M., Qin, Y., Greenwood, J.,

Soucy, E.R., Klein, M., Smith-Parker, H.K., et al. (2014). Dynamic encoding of

perception, memory, and movement in a C. elegans chemotaxis circuit.

Neuron 82, 1115–1128, https://doi.org/10.1016/j.neuron.2014.05.010.

Maier, W., Adilov, B., Regenass, M., and Alcedo, J. (2010). A neuromedin U re-

ceptor acts with the sensory system to modulate food type-dependent effects

on C. elegans lifespan. PLoS Biol. 8, e1000376, https://doi.org/10.1371/jour-

nal.pbio.1000376.

Marder, E., and Bucher, D. (2001). Central pattern generators and the control

of rhythmic movements. Curr. Biol. 11, R986–R996, https://doi.org/10.1016/

s0960-9822(01)00581-4.

Marques, J.C., Lackner, S., Félix, R., and Orger, M.B. (2018). Structure of the

zebrafish locomotor repertoire revealed with unsupervised behavioral clus-

tering. Curr. Biol. 28, 181–195.e5, https://doi.org/10.1016/j.cub.2017.12.002.

McCloskey, R.J., Fouad, A.D., Churgin, M.A., and Fang-Yen, C. (2017). Food

responsiveness regulates episodic behavioral states in Caenorhabditis elegans.

J. Neurophysiol. 117, 1911–1934, https://doi.org/10.1152/jn.00555.2016.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

C. elegans: Strain ZIM958: lite-1 (ce314) This study N/A

C. elegans: Strain ZIM1466: lite-1 (ce314); mzmEx877[Pnlr-1(�150;-1)::HisCl::SL2::mCherry ];

mzmIs52[Punc-31::NLSGCaMP6f]

This study N/A

C. elegans: Strain ZIM1564: lite-1 (ce314); mzmEx929[Punc-7 s::CreVDH;Pmyo-3::mCherry] This study N/A

C. elegans: Strain ZIM1725: lite-1 (ce314); mzmEx1018[Punc-7 s::CreVDH;Pmyo-3::mCherry] This study N/A

C. elegans: Strain ZIM1418: lite-1 (ce314); mzmEx858[Pflp-22::DIO-HisCl::SL2::mCherry;

Pelt-2::NLSdsRedNLS]

This study N/A

C. elegans: Strain ZIM1473: lite-1 (ce314); mzmIs28[Punc-17beta::HisCl::SL2::mCherry] This study N/A

C. elegans: Strain ZIM1628: lite-1 (ce314); mzmEx877[Pnlr-1(�150;-1)::HisCl::SL2::mCherry];

mzmEx929 [Punc-7 s::CreVDH;Pmyo-3::mCherry];mzmIs52 [Punc-31::NLSGCaMP6f]

This study N/A

C. elegans: Strain ZIM1748: lite-1 (ce314); mzmEx877[Pnlr-1(�150;-1)::HisCl::SL2::mCherry];

mzmEx1018 [Punc-7 s::CreVDH;Pmyo-3::mCherry];mzmIs52 [Punc-31::NLSGCaMP6f]

This study N/A

C. elegans: Strain ZIM1562: lite-1 (ce314); mzmEx877[Pnlr-1(�150;-1)::HisCl::SL2::mCherry];

mzmEx858 [Pflp-22::DIO-HisCl::SL2::mCherry;Pelt-2::NLSdsRedNLS ];mzmIs52 [Punc-31::

NLSGCaMP6f]

This study N/A

C. elegans: Strain ZIM1574: lite-1 (ce314); mzmEx877[Pnlr-1(�150;-1)::HisCl::SL2::mCherry];

mzmIs28 [Punc-17beta::HisCl::SL2::mCherry];mzmIs52 [Punc-31::NLSGCaMP6f]

This study N/A

C. elegans: Strain ZIM1658: lite-1 (ce314); mzmEx981[Punc-17beta::NLSGCaMP6f] This study N/A

C. elegans: Strain ZIM1467: lite-1 (ce314); mzmEx882[Punc-7S::CreVDH;Pflp-22::DIO-

mCherry;Pflp-22::DIO-GCaMP6Fopt]

This study N/A

C. elegans: Strain ZIM2122: lite-1 (ce314); mzmEx1268[Pinx-1::hisCl; Pflp-17::mCherry] This study N/A

C. elegans: Strain ZIM2105: lite-1 (ce314); tdc-1 (n3419); mzmEx882[Punc-7S::CreVDH;

Pflp-22::DIO-mCherry;

Pflp-22::DIO-GCaMP6Fopt]

This study N/A

C. elegans: Strain ZIM2106: lite-1 (ce314); lgc-55(n4331); mzmEx882[Punc-7S::CreVDH;

Pflp-22::DIO-mCherry; Pflp-22::DIO-GCaMP6Fopt];

This study N/A

C. elegans: Strain ZIM2124: lite-1 (ce314); yxEx696 [Pglr-3::TeTx::mCherry; Punc-122::dsRed];

mzmEx882[Punc-7S::CreVDH; Pflp-22::DIO-mCherry; Pflp-22::DIO-GCaMP6Fopt]

This study N/A

C. elegans: Strain ZIM2120: lite-1 (ce314); mzmEx1262 [Pglr-3::hisCl::SL2::mCherry;

Pflp-17::mCherry]; mzmEx882[Punc-7S::CreVDH; Pflp-22::DIO-mCherry; Pflp-22::

DIO-GCaMP6Fopt]

This study N/A

C. elegans: Strain ZIM2128: lite-1 (ce314); unc-25 (e156); mzmEx882[Punc-7S::CreVDH;

Pflp-22::DIO-mCherry; Pflp-22::DIO-GCaMP6Fopt];

This study N/A

C. elegans: Strain ZIM1749: lite-1 (ce314); mzmEx1041[Psto-3::HisCl::mCherry;Punc-122::GFP] This study N/A

C. elegans: Strain ZIM1563: lite-1 (ce314); mzmEx928[Psto-3::Chrimson::mCherry;Punc-122::GFP] This study N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

All unique/stable reagents generated in this study are available from the Lead Contact (M.Z., manuel.zimmer@univie.ac.at) with a

completed Materials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were performed in lite-1 (ce314) animals to reduce light responses (Liu et al., 2010). Young adult hermaphrodites

were used for all experiments. Worms were maintained using standard methods (Brenner, 1974) and grown at 20�C on nematode

growth media (NGM) plates, which were seeded with Escherichia coli OP50 as a food source. A detailed list of all transgenic strains

used is provided in the Key Resources Table and Table S1.
Neuron 105, 562–576.e1–e9, February 5, 2020 e1

mailto:manuel.zimmer@univie.ac.at


METHOD DETAILS

Population behavior assays
For on-food assays (Figures 8G, 8H, 8L–8N, S8C, and S8D),�20 animals (young adults, 0 eggs to 1 row of eggs) were transferred to a

15cm NGM assay plate seeded with OP50 (previously grown for 16 h at room temperature). For off-food assays (all other behavior

experiments) animals were picked onto a food-free NGM plate, immersed in 1mL S-basal to remove transferred food, and picked

again onto a food-free 15cm NGM assay plate. Data in Figure 1C are combined from an equal number of on- and off-food

experiments, because head-casts make up the majority of bends on-food and propagated-bends make up the majority off-food.

Data in Figure 1D and Figures S1B-S1D, S1G, and S1H are taken only from animals off-food to enable comparison within a single

condition. Data in Figures S1E–S1G are taken fromCa2+ imaging experiments, which showed a higher number of head-cast episodes

with more 4-6 head-casts and which had dorsal/ventral sides annotated, unlike animals recorded in behavior assays. In both on- and

off-food cases, a 36mm x 36mm assay arena was delineated by Whatman paper soaked with 20mM CuCl2, a repellent used to

prevent worms from leaving the arena. A custom transparent plexiglass gas flow device (Hums et al., 2016) of 39mm x 39mm x

0.7mm was placed on top of this arena, through which 21% O2 was delivered at 25mL/min via a static gas mixer connected to

mass flow controllers (Vögtlin Instruments), operated by customwritten LabVIEW scripts (National Instruments). For off-food assays,

21% O2 was switched to 4% O2 to examine sensory responses; for on-food assays, 21% O2 was required to observe significant

roaming periods. Arenas were illuminated with red LEDs and movies were recorded at 10fps on 5 megapixel CMOS cameras (Tele-

dyne DALSA) with a pixel resolution of 0.0129 mm/pixel. Animals were allowed to acclimate for either 5min (off-food) or 1 h (on-food)

prior to recordings.

For histamine assays, prior to picking onto the assay plates, animals were incubated for 30-45min on plates with NGM agar

including either 20mM histamine (+His; histamine dihydrochloride, Sigma-Aldrich) or an equal volume of water (-His) and seeded

with OP50 across the entire agar surface to enhance histamine uptake. Recordings were performed on +His and -His assay plates.

For optogenetics assays, animals expressing the optogenetic activator Chrimson (Klapoetke et al., 2014) were grown on NGMplates

seeded with OP50 plus either 100 mM all-trans retinal (ATR) or an equal volume of ethanol lacking ATR (Control). One day prior to

assays, L3 and L4 animals were picked onto fresh ATR or Control plates. After 30min without light, constant 591nm light was

delivered, via a custom-made ring of LEDs above the assay plate, at �45 mW/mm2 for 30min.

Movies were analyzed using custom image processing and tracking code inMATLAB (Mathworks), built upon previously published

scripts (Ramot et al., 2008). Briefly, worms were detected by gray level thresholding, and trajectories were found by adjoining nearby

centroid coordinates in adjacent frames. These centroid data were used for speed, angular speed, reversal, and heading change

quantifications. To measure bend angles, worm images were analyzed as described in (Hums et al., 2016). Briefly, binarized

worm images were skeletonized to produce splines tracing the midline of each worm. Splines were smoothed and divided into 25

equally spaced body segments. Head versus tail positions were determined by direction of centroid movement. Angles were

measured between adjacent segments as in Figure 1A to produce 24 angle measurements for each frame in each worm’s trajectory.

Power spectra in Figures S3E–S3H, S4C, and S5A–S5Cwere calculated using theMATLAB (Mathworks) function fft on the timeseries

concatenated across experiments. For experiments in which manipulations caused a loss of animal movement, it was important to

exclude time-averaged background subtraction prior to gray level thresholding, and to assign head position manually. Ventral and

dorsal were indistinguishable in these lower-resolution recordings, so angle sign was assigned randomly; all panels distinguishing

ventral and dorsal directions made use of higher-resolution movies recorded along with Ca2+ imaging (see below).

Ca2+ imaging in immobilized animals
For immobilized Ca2+ imaging whole-brain and whole-nervous system experiments, transgenic adult C. elegans (1 day after larval L4

stage, 0-10 eggs) expressing genetically-encoded calcium indicator NLS-GCaMP6f (Chen et al., 2013) panneuronally (using the

Punc-31 promoter) were recorded as described previously (Kato et al., 2015) with following modifications. Previously, we found

that forward command states occasionally terminate in quiescence periods (Kato et al., 2015; Nichols et al., 2017). Thus, to increase

forward command state occurrence, we expressed the Drosophila hisCl channel (Pokala et al., 2014) in the quiescence-promoting

neuron RIS (Nichols et al., 2017; Turek et al., 2013) with the Pnlr-1 (Gendrel et al., 2016; Haklai-Topper et al., 2011) promoter. To

silence the SMDs, hisCl was expressed specifically in these neurons using a Cre-lox strategy. To this end, we expressed Cre with

the Punc-7S promoter (Starich et al., 2009) and the HisCl::SL2::mCherry construct within a double inverted open reading frame

(DIO) with the Pflp-22 promoter (Kim and Li, 2004). SMD inhibition was confirmed using themCherry marker co-expressed with HisCl

while co-recording GCaMP from the SMD neurons; animals showing residual SMD activity (�50% of animals) were excluded from

further analysis. Residual SMD activity often observed inmCherry-positive neurons (data not shown)may explain residual head-cast-

ing in SMD::hisCl animals (Figure 4B). Body MNs were silenced by expressing hisCl and mCherry in VNC cholinergic motor neuron

classes AS, DA, DB, VA, VB with promoter Punc-17b (Charlie et al., 2006); this promoter is referred to as VNCACh throughout. While

we could not use the mCherry marker to unambiguously identify DB01 and DB02 in these animals, we confirmed that all mCherry-

positive neurons in the retrovesicular ganglion (where DB01 and DB02 nuclei reside) showed little to no activity.

Immobilized Ca2+ imaging experiments were performed with custom-made microfluidic two-layer PDMS devices as previously

described (Kato et al., 2015; Schrödel et al., 2013), with modifications. In addition to the curve in the worm channel used to align

worms laterally (Cáceres et al., 2012), a straightening of the channel was followed by a second curve designed to fit a young adult
e2 Neuron 105, 562–576.e1–e9, February 5, 2020



worm. This curve was designed to align the animal’s head and tail, thus reducing the necessary imaging area to record the activity of

all neurons in the C. elegans body; it also contains a narrowing in order to keep the animal’s head in place. A technical drawing of the

design is provided in Figure S2A.

As previously described (Hums et al., 2016; Zimmer et al., 2009), the worm channel of the microfluidic device was connected to a

syringe containing nematode growth medium (NGM) buffer with 1 mM tetramisole and 20 mM histamine (his-tet-NGM). All compo-

nents were connected using Tygon tubing (0.02 in ID, 0.06 in OD; Norton) or polyethylene tubing (0.066 in ID, 0.095 in OD; Intramedic)

using 23G Luer-stub adapters (Intramedic). Constant gas delivery at 21%O2 at a flow rate of 50ml/minwas regulatedwith a gasmixer

attached to mass flow controllers (Vögtlin Instruments) that mixed oxygen and nitrogen from pressurized gas tanks, using LabView

software.

Well-fed worms were transferred onto NGM agar plates seeded with OP50 E. coli mixed with 20 mM histamine to feed on for

30-45 min. To rid them of bacteria covering the body, the animals were transferred into a drop of his-tet-NGM on a food-free

NGM agar plate and then onto a second NGM plate with his-tet-NGM buffer. A vacuum was manually applied with the syringe to

suck up individual animals into Tygon tubing; this tubing was subsequently reconnected to the worm inlet to arrange the worm in

the curved channel. The fluorescence values were recorded 5 min after loading; the illumination and piezo stage were switched

on 2-3 min before acquisition start. Animals were imaged at 21% O2 for 30 min.

High-resolution data of neuronal activity in the head ganglia (whole-brain recordings) was acquired with an inverted UltraViewVoX

spinning disk confocal microscope (PerkinElmer) using an EMCCD camera (C9100-13, Hamamatsu) and a 40x 1.3 NA EC Plan-

Neofluar oil-immersion objective (Zeiss). The volume spanning the animals’ head ganglia was recorded in 13-15 2 mm z-planes,

each illuminated for 10ms to record GCaMP6f fluorescence, resulting in acquisition rates of 1.55 - 2.23 volumes/sec. High-speed,

high-resolution data of SMD neuronal activity in immobilized animals was acquired to confirm that the acquisition rate of whole-brain

recordings was sufficient to capture SMD dynamics. This was achieved using with an inverted spinning disk confocal microscope

(Observer Z1, Zeiss with Yokogawa CSU-X1 spinning disk) with a 40x 1.2 NA LCI Plan-Apochromat multi-immersion objective (Zeiss)

with an EMCCD camera (Evolve 512, Photometrics). To obtain data with high temporal resolution, we recorded single planes illumi-

nated for 20ms, resulting in an acquisition speed of 50 Hz. Whole-nervous system neuronal activity was recorded using an inverted

fluorescence microscope (Observer Z1, Zeiss) with a 25x 0.8 NA LCI Plan-Neofluar multi-immersion objective (Zeiss) and recorded

with a scientific complementary metal-oxide-semiconductor (sCMOS) camera (pco.edge 4.2, PCO) using Visiview software (Visitron

Systems). The nervous system was recorded in 30 1 mm z-planes illuminated each for 10ms, resulting in an acquisition rate of 3.0303

volumes/sec. To increase the contrast and resolution of the image data in the immobilized whole-nervous-system recordings exclu-

sively, we used a deconvolution algorithm (classic maximum likelihood estimation) using Huygens software (signal/noise ratio, 8;

automatic background estimation; iterations, 40; quality change stopping criterion, 0.1). After deconvolution, the neuronal activity

traces extracted from immobilized whole-nervous-system recordings were compared to ‘‘ground truth’’ high-resolution whole-brain

recordings acquired with spinning disk confocal microscopy in order to assess the quality of the whole-nervous-system data and to

ensure that the deconvolution procedure did not introduce artifacts. Importantly, deconvolution was performed only for whole ner-

vous system recordings in immobilized worms because a standard spinning disk confocal microscope (Yokogawa CSU-X1 scanning

head) does not provide the needed field of view. Head-tail multi neuron imaging and all imaging on freely moving animals did not

include image deconvolution post processing steps.

Simultaneous imaging of neuronal activity and behavior
Transgenic young adult worms (0-6 eggs), expressing GCaMP6f and mCherry in specific neurons of interest, were placed onto a

foodless NGM agar plate, allowed to crawl away from food, then picked onto another foodless NGM agar plate. Then, as in (Collins

and Koelle, 2013), a �40mm x 40mm chunk of agar surrounding the worm was removed and covered with a 45mm x 50mm #1.5

coverglass, so that the worm was between coverglass and agar. Under these conditions worms move slower but with qualitatively

normal body shapes and behavior. The coverglass setup was placed into a motorized stage with associated controller (MS-2000-

PhotoTrack, Applied Scientific Instrumentation). After a 5min acclimation period including at least 2min excitation light exposure,

each worm was recorded for 8min. Images were acquired using an inverted compound microscope (Ziess Axio Observer.Z1) with

two Charge-Coupled Device cameras (Evolve 512, Photometrics). A CoolLED pE-2 excitation system provided dual wavelength

excitation light (470 and 585 nm) with an ET-EGFP/mCherry filter set (59022x, Chroma) and dichroic (59022bs, Chroma). A 63x oil

objective (Zeiss Plan-Apochromat, 1.4 NA) was used to stream unbinned single-plane fluorescence images at 33ms exposure

time, resulting in �30 Hz imaging frame rate, with Visiview software (Visitron Systems GmbH). Sparse drivers were used to enable

stable GCaMP expression specifically to neurons of interest (and few others), a precaution necessary to ensure the unambiguous

identification of specific neurons of interest and the subsequent extraction of their neuronal signals. The neuron(s) of interest were

re-centered onto the objective using the system described in (Faumont et al., 2011): a dichroic mirror (620 spxr, Chroma) directed

the high-wavelength portion of themCherry emission to a four-quadrant photomultiplier tube (Hamamatsu). Remaining emission light

was split by a DualCam DC2 cube (565 lpxr, Photometrics) to each CCD camera, one for mCherry (641/75nm, Brightline) and one for

GCaMP (520/35nm, Brightline). Simultaneous behavior recordings were made under infrared illumination (780nm) using a CCD cam-

era (Manta Prosilica GigE, Applied Vision Technologies) at 4x magnification and 100ms exposure time. Approximately 8 min of data

were acquired for each animal.
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Data Analysis
Neuronal time series extraction from immobilized pan-neuronal imaging experiments

As described before (Kato et al., 2015), neuronal activity traces were obtained by tracking the intensity maxima in each volume over

time and calculating the single-cell fluorescence intensities (F). F0 was calculated as the mean fluorescence intensity across the trial.

After background subtraction, DF/ F0 was calculated for each neuron.DF/F0 neural traces were then detrended to correct for bleach-

ing in a two-step procedure which gave qualitatively better results compared to the previously described method (Kato et al., 2015).

First, we performed and exponential fit to each trace, followed by fitting a single exponential function to peaks of the neural traces.

This second bleach-correction step (referred to as detrending), occasionally drastically over-corrected and resulted in distorted

neuronal traces in a small number of instances. Thus, we calculated the relative change in variance of each trace after the second

detrending step ðvarðpost�detrendingÞ�varðpre�detrendingÞ =varðpre�detrendingÞÞ as a measure of distortion. The distribution

of thesemeasures across all neurons exhibited a long tail and instructed us to determine a relative change of 8 as a cutoff for distorted

traces. For neural traces above the variance change cutoff (3.31% of the neuronal traces analyzed), we resorted to the single bleach-

corrected version of the trace.

Neuronal identification (pan-neuronal imaging)

In whole-brain Ca2+ imaging data, the activity of 113-129 neurons was detected in the head ganglia, which corresponds to 49.7 -

66.15% of expected neurons. The rest likely were constitutively inactive and thus showed very low fluorescence levels; we further

cannot exclude that the label is not expressed in a small fraction of neurons. In whole-nervous system Ca2+ imaging data, 103-

129 neurons were detected across the whole body (39.4 - 42.7%).

The identification of the neurons of interest was done according to their activity patterns, anatomical location (https://www.

wormatlas.org/) and our experience with red fluorophore expression in specific marker lines reported in previous recordings (Kato

et al., 2015; Nichols et al., 2017; Skora et al., 2018). In addition, the SMD neurons were identified by driving worm codon-optimized

mCherry (wCherry) (Kawano et al., 2011) expression with the Pflp-22 and Punc-7 s promoters; henceforth, we disambiguated the

uncertain cell class identity of these neurons reported in previous studies (SMDD versus SMB or RMF)(Kato et al., 2015; Schrödel

et al., 2013). B-MNs along the VNC were identified with the Pacr-5 promoter (Winnier et al., 1999); PDA was identified with a Cre-

lox strategy using the Pflp-7::Cre and Pnmur-1::DIO-mCherry constructs (Kim and Li, 2004; Maier et al., 2010). We denoted # cases

in which reliably observed activity patterns in distinct locations could not be unambiguously assigned to neuronal identities; their

neuronal identities and possible alternatives are shown in brackets: URY (URA, IL1), RMD (SAA, RIA, SIB, RIH), SIB (SIA, RMD, RMH).

B-MN IDs were determined by a combination of position, activity, and specific marker line information. We consistently observed

four neurons in the retrovesicular ganglion (RVG) with heightened activity during forward command states; we labeled the anterior-

most neuron VB02 and the posterior-most neuron DB01, in agreement with previous IDs (https://www.wormatlas.org/). Of the

remaining two neurons, we consistently found one with activity patterns like DB01 and VB02 (i.e., slow rises following AVA fall

and activity plateaus throughout forward command states) and one with more spike-like, unpredictable activity transients. We

used Pceh-12::mCherry to label VB neurons (Von Stetina et al., 2007) while recording and found that the latter neuron is VB01;

the former is therefore DB02. Other B-MNs are reported to occur in a specific pattern along the VNC: DB03 and VB04 are posterior

to the RVG and separated by cell bodies of other neuron classes, and posterior to VB04 is a repeating pattern of consecutive (i.e.,

uninterrupted by other cell bodies) VB/DB pairs followed by single VB neurons. We used Pacr-5::mCherry to label all B-MNs and their

processes and confirmed this 2-1-2-1 pattern. This marker also showed that in VB/DB pairs, the VB neuron is always anterior (DB but

not VB neurons have commissures that cross to the dorsal side). One exception to this rule was the posterior-most pair: 11/20

animals showed DB07 anterior to VB11. In whole-nervous-system recordings, we found the expected number of neurons in the ex-

pected anatomical pattern showing heightened activity during forward command states in all recordings. This allowed us to assign

IDs to all such neurons except DB07 and VB11; we labeled the anterior of this pair DB07a and the posterior VB11p.

Principal Component Analysis (PCA; immobilized pan-neuronal imaging)

Our previously reported neuronal activity studies in freely moving animals showed that behavioral parameters like motor state, crawl-

ing speed and turning strength can sometimes better be decoded either from the time derivatives or original Ca2+-imaging traces,

depending on neuronal class (Kato et al., 2015). Unlike in our previous work, where we performed PCA only on the time derivatives

(Kato et al., 2015; Nichols et al., 2017; Skora et al., 2018), we here performed PCA on both original Ca2+-imaging traces plus their

derivatives, thus each neuron is represented by two variables (rather than one) where each recording frame is one observation.

This procedure is less biased as it captures both instantaneous Ca2+-levels as well as the dynamics of each neuron. First, the

time derivatives of DF/F0 of the detrended neuronal activity traces were calculated using the total variation regularized differentiation

method (Chartrand, 2011). The neural traces were normalized so that each trace and its time derivative had equal variance. PCA was

performed on the detrended DF/F0 neural traces and their time derivatives simultaneously using the MATLAB (Mathworks) pca func-

tion, which also calculated variance explained for each PC. For visualization purposes, a 10-sample sliding average filter was applied

to the PCA-phase plot trajectories. Command state coloring of the phase plot trajectories was performed similarly as described pre-

viously (Kato et al., 2015). Shortly, AVA, SMDD and SMDV activities were used to assign behavior state commands to population

neuronal activity. For this, RISE, HIGH, FALL and LOW phases were identified for these neurons as follows: RISE and FALL phases

were defined as time points when their time derivative was greater than a small positive threshold or smaller than a negative
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threshold, respectively. The remaining time points were assigned to HIGH and LOW phases based on behavioral state order and a

threshold. The time points in the trajectory of neuronal activity were then colored by AVA phase (AVA rise and high as reversal, fall as a

post-reversal turn, and low as forward command)(Figures 2C and S2B). Note that AVA falls were coupled to either SMDV or SMDD

rises and these were mutually exclusive in 100% of all detected AVA falls (Figure S5K).

Command state identification, duration quantification (immobilized pan-neuronal imaging)

Forward command states were inferred from the activity of interneuron AVA, as previously described (Kato et al., 2015). Shortly, time

points of falling Ca2+ transients and low intensity AVA Ca2+ signals were defined as forward command states. Time points of rising

Ca2+ transients and high intensity Ca2+ signals were defined as reversal command states.

Mean activity difference quantification (pan-neuronal imaging)

In order to assess whether neuronal activity levels are modulated by the forward/reverse command state, we calculated for each

neuron the mean DF/F0 of the Ca2+ imaging neural activity traces in all forward and reverse command states, separately, and calcu-

lated the difference. As for the peak frequency quantification (see below), all neurons identified in at least three recordings were taken

into account. We determined which neurons showed a significant difference between their mean activity levels in the forward versus

reverse command states with a paired t test (p values reported in Table S2).

The distribution of forward command state duration was bimodal (data not shown) and states shorter than 50 s rarely allowed for

more than one fluctuation per state. In order to avoid a bias in our analysis because of lack of data, forward command states shorter

than 50 s were excluded from the analysis. Frequencies were calculated as the number of maximum peaks within each forward com-

mand state divided by the duration of each forward command state for each neuron. Instances where a neuron was identified but no

peaks were detected were counted as zero.

Peak frequency quantification (immobilized pan-neuronal imaging and freely moving imaging)

Peak detection was used to quantify neuronal activity data shown in Figures 3, 4, 5, 6, 7G, 7H, S2D, S2E, S3C, S3D, S5D, S5L, S6,

and S7E–S7I. For Figures 3, 4, S2D, and S2E only, peaks were detected on derivative timeseries: for all neurons identified in at least

three recordings, we obtained their smoothed time derivatives with the total variation regularized differentiation method (Chartrand,

2011). For all peak detections, derivative and non-derivative, we took the following approach. We detected local maxima andminima

in each trace: maximum peaks were found as maximal values that were preceded and followed byminima values separated from the

maximum by an amplitude difference of at least delta, a key parameter. Peak detection involves a tradeoff between false positives

and false negatives; the parameter delta determines how liberal (more false positives) or conservative (more false negatives) the peak

detection is. We developed a simple method to automatically determine a near-optimal delta value (i.e., minimizing both false pos-

itives and false negatives) for each neuronal activity trace.We first perform peak detection with a wide range of deltas that spans from

too liberal (many false positives, due to detection of noise) to too conservative (many false negatives, large amplitude peaks not

detected). Then, we plot the number of peaks detected as a function of delta. The shape of this curve varies depending on the activity

trace, but often resembles a piecewise linear function of two parts. At low delta values, the slope is high: the number of peaks

detected by low delta values is dominated by false positives due to noise, and in this case, small increases in delta cause large

decreases in the number of peaks detected. At high delta values, the slope is low: the peaks detected at high delta values are

only real (i.e., large amplitude) ones, and in this case, small increases in delta typically result in little to no change in the number

of detected peaks. Therefore, the slope of the curve at high delta values is much closer to 0 than at low delta values. In the ideal

case, the change point between these two lines is clear, giving an optimal delta value at which the numbers of both false positives

and false negatives are minimized. We determined this point using theMATLAB (Mathworks) function findchangepts, with the ‘linear’

option; this outputs the index of the curve at which both the mean and slope change most abruptly.

This method matched our hand-chosen ‘‘ground truth’’ detected peaks remarkably well for several traces, and performed much

better than choosing a single delta value for all traces in a dataset. However, this method remains dependent on two parameters.

First, all peak detection methods depend strongly on the degree to which the data are smoothed. Second, the range of deltas tested

determines whether or not this method will succeed. If the delta range is dominated by deltas that are too low or too high, it will not

find an adequate changepoint, or the changepoint will be too liberal or too conservative for all traces. We found that a single range of

deltas works well for all data in a particular noise (e.g., sampling rate, degree of smoothing) and amplitude (e.g., derivative or non-

derivative) regime.We also found that a good starting point to determine the delta range for a particular trace was to use the standard

deviation, setting this value as the maximum of the delta range, while setting the minimum and interval between deltas as the stan-

dard deviation divided by 100. In this work, for each of four different types of datasets, we used a different delta range, as follows. For

peak detection on derivatives from immobilized worm recordings (Figures 3, 4, and S2), the delta range went from 10�4 to 0.03 in

steps of 5x10�5. For peak detection on raw traces of immobilized worm recordings at 1.5-3 Hz (Figures 7H, S3C, S3D, S5L, and

S7F), the delta range went from 0.001 to 0.5 in steps of 0.001. For peak detection on raw traces of immobilized worm recordings

at 50 Hz (Figures S3C and S3D), the delta range went from 0.08 to 0.3 in steps of 0.0005. For freely moving imaging recordings (Fig-

ures 5, 6, 7, and S5–S7), the delta range went from 0.001 to 1 in steps of 0.001. For peak detection on derivatives, which gave better

results across all neurons in brain-wide recordings than peak detection on raw traces, two additional steps weremade: (1) peaks with

amplitudes less than 0 were excluded, as these are changes in the slope of a fall rather than rises; (2) the second of two subsequent

maxima was only included if the intervening minimum fell below 0. If the intervening minimum did not fall below 0, the two peaks

correspond to changes in slope rather than individual calcium peaks, and the second peak was therefore excluded.
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Cross-correlation analysis (immobilized pan-neuronal imaging)

Covariograms were calculated for all neurons that could be reliably identified across at least three immobilized worm recordings.

Covariograms report the frequency, relative to chance levels, of a ‘‘target’’ neuron’s peak at different time delays relative to a

‘‘reference’’ neuron’s peak. We found covariogram analysis superior to standard cross-correlation analysis for our sparse data.

For example, neurons often showed only one or two activity transients per forward command state. Standard cross-correlation

on sparse data would report a high value at a given lag for two neurons showing few activity transients each, despite having inde-

pendent signals. For example, a toy dataset of two signals, one oscillatory and one with a single step or few step signals would result

into a strong cross correlation signal, which would otherwise vanish, if the time-series could be expanded to capture many sparse

signals, which often is experimentally unfeasible. Averaging max cross-correlation values across forward states would therefore

result in high correlations for neurons showing sparse activity. Covariograms, by contrast, take into account the number of peaks

detected, thus enabling statistical testing to exclude cases with few peaks from significance.

Covariograms were computed as described in ref. (Brody, 1999) with some minor adjustments to account for variations in forward

command state duration. For each neuron pair, we first computed raw cross-correlogram counts as follows. We used peaks iden-

tified as described in the above section, only during forward command states longer than 50 s. For each peak in the reference neuron

(rows in Figures 3C and S2E), all peaks in the target neuron (columns in Figures 3C and S2E) during the same forward command state

were considered; in 10 s bins, the time delays of these target neuron peaks relative to the reference peak were accumulated. This

procedure was used across all reference peaks within each state, and ultimately to accumulate the full raw cross-correlogram across

all forward command states across all recordings. Raw cross-correlogram counts were then converted to frequencies, by dividing by

the number of available data for each bin (i.e., the number of possible frames in each bin in which spikes could have occurred, which

varies due to differences in trial duration). 106 resampled raw cross-correlograms were computed by randomly selecting the same

number of spike times of the target neuron within each forward state and normalizing in the samemanner. This resampling procedure

accounts for trial-to-trial co-fluctuations in neuronal activity frequencies that may be independent of peak timing relationships but

inadvertently cause peaks in the cross-correlogram (Brody, 1999). Covariograms were then computed by subtracting the average

resampled raw cross-correlograms (which serves as the ‘‘shuffle corrector’’ or ‘‘shift predictor’’ [Brody, 1999]) from actual raw

cross-correlograms. For statistical significance test, see below, section ‘‘Quantification and statistical analysis.’’

Neuronal time series extraction and behavior analysis (freely moving imaging)

GCaMP and mCherry signals acquired at 30 Hz were extracted by first tracking the mCherry signal of the nucleus or cell body of

interest using Metamorph software (Molecular Devices). Then, using custom MATLAB (Mathworks) scripts, the coordinates of the

tracked regionswere used to extract the average of the 50 brightest pixels. A backgroundmeasurement from the first frame per chan-

nel per recording was subtracted. The GCaMP/mCherry ratio, henceforth ‘‘R,’’ was then used to calculate an R0 value as themean of

the lowest 10% of ratio values. DR/R0 was then calculated as (R – R0) / R0. For subsequent analyses, peaks were detected using a

parameter delta determined by manual inspection. A maximum point must be preceded and followed by a value lower by at least

delta, and vice versa, a minimum point must be preceded and followed by a value higher by at least delta. Data were further normal-

ized by the 95th percentile in each recording for Figures 5H and S5F.

Reversals were identified manually by examining infraredmovies. All other time points were considered as forward states. Custom

MATLAB (Mathworks) scripts used a combination of edge detection and gray level thresholding to extract a binary worm image,

which were used for subsequent skeletonization as described in (Hums et al., 2016) to quantify 24 angle measurements. Angle mea-

surements were linearly interpolated to match the 30 Hz Ca2+ recording and manually inspected for correct ventral/dorsal

assignment.

Propagation analysis, head-bend type classification, and cycle period quantification (behavior assays and freely

moving imaging)

Note that data in Figures 1E, 1F, and S1E–S1G were obtained from Ca2+ imaging recordings, as these recordings were high enough

resolution (and contained fluoresecent neuronal markers) to distinguish dorsal and ventral sides, and because head-casts weremore

prominent in these animals allowing us to quantify head-cast episodes containing more than two head-casts. All other data in these

figures were obtained in population behavior assays. Kymograms from either population behavior assays or simultaneous Ca2+ im-

aging and behavior experiments were smoothed and, in the case of missing data due to poor skeletonization, linearly interpolated to

fill gaps < 1 s. All subsequent analyses were performed separately on forward and reverse locomotion periods. For each angle times-

eries, local maxima and minima were detected using a parameter delta determined by manual inspection. A maximum point must be

preceded and followed by a value lower by at least delta, and vice versa, a minimum point must be preceded and followed by a value

higher by at least delta. Each angle timeseries was thereby transformed into an ‘‘angle peak timeseries’’ containing for each frame

either a maximum ( = 1), a minimum ( = �1), or neither ( = 0). Note that maxima (minima) can be dorsal (ventral) if the head-bend

changes by at least delta but does not cross 0. The resulting matrix of all angle peak timeseries, or ‘‘peak kymogram,’’ (Figure S1A,

lower) of the same size as the original kymogram, was analyzed to determine the propagation of each head-bend as follows.

Because the first (anterior-most) angle is typically noisier than the others, peaks in the second angle were initially defined

as head-bends. Head-bends were then analyzed in temporal order, in the following manner. For each head-bend (angle #2

peak), if the previous (i.e., backward or simultaneous in time) peak in angle #1 is of the same sign as the current head-bend
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(maximum, = 1, or minimum, = �1), and hasn’t been assigned to a previous head-bend, then that peak is assigned to the

current head-bend. Similarly, if the next (i.e., forward or simultaneous in time) peak in angle #3 is of the same sign as the

current head-bend (maximum, = 1, or minimum, = �1), and hasn’t been assigned to a previous-head-bend, then that peak

is assigned to the current head-bend. The next peak in angle #4 is examined with respect to the current peak in angle #3 in

the same way; this process is iterated posteriorly until the final angle (see Figure S1A, lower), or until the propagation is termi-

nated as follows. If the next posterior peak is of the opposite sign as the current head-bend, the head-bend is terminated. If the

next posterior peak (a) occurs > 10 s following the previous peak and/or (b) occurs following at least two unassigned peaks in

the previous (i.e., anterior) angle, then it is likely not part of the current head-bend, so the head-bend propagation is terminated.

In both above cases, if the final propagation angle was less than or equal to angle #13, then the head-bend is assigned as a

head-cast. If the final propagation angle was angle #14 or greater, then the head-bend is assigned as a propagated-bend. If the

animal reverses or if missing data are encountered, the head-bend is terminated as well; in this case, if the final propagation

angle is #14 or greater, the head-bend is assigned as a propagated-bend, but if it is less than angle #14, it is ambiguous as

to whether the head-bend would have propagated further and is therefore not classified. Head-bends that are not connected

to bends in any other angle are also not classified as they are likely due to noise or artifacts in angle measurement. To account

for such measurement noise, which may be amplified by peak detection, each head-bend is allowed to propagate backward in

time by 0.1 s, and up to 1 s only once per propagation (for example, see Figure S1A, lower, t = 19 s, angle #24). Additionally, two

segments per propagation may be skipped if a peak of the correct sign is not detected before the termination condition (for

example, see Figure S1A, lower, t = 12 s, angles #22-23). These heuristics enabled the most robust detection of head-bend

propagation upon inspection.

Note that for the 2nd head-cast of each pair, there is some ambiguity with regard to whether posterior bends, which are of the same

sign, should in fact be assigned to the previous propagated-bend as opposed to that head-cast (in which case that head-cast would

instead be assigned as a propagated-bend). Our algorithm assigns these ambiguous posterior bends to the earliest possible head-

bend; for example, see Figure S1A, lower, first head-cast pair. Results from SMD andDB02 neuronal activity imaging during behavior

suggest that this procedure meaningfully assigns different head-bend types, because neuronal activity during the earlier head-bend

is indistinguishable from other propagated-bends, whereas neuronal activity during the later head-bend ismarkedly different (Figures

5C and 7E).

Reversal states were analyzed the same way, only with kymograms flipped left/right such that bends are quantified as if they

propagated head-to-tail, as during forward locomotion, rather than tail-to-head. This allows the classification of bends propagating

fully from tail to head as well as bends that start in the neck and propagate toward the head, which for Figure S1J were considered

head-casts. Also considered head-casts during reversals for Figure S1J were bends that propagate as head-casts normally do,

which were found by analyzing reversal states without flipping left/right.

Because head-casts typically occurred in only half-cycles (i.e., two head-casts, one ventral and one dorsal, without a return to

the side of the first head-cast), head-cast cycle period in Figure 1D was calculated by doubling head-cast inter-bend intervals

(only measured between two consecutive head-casts). For Figure 1D propagated-bend cycle periods were calculated regard-

less of intervening head-cast interruption; note that a reduction in head-casts caused only a small change in propagated-bend

inter-bend intervals (Figure S4D). Note that head-casts were typically posterior to and slower than the 4-5Hz nose-tip move-

ments previously described as ‘‘foraging,’’ (Huang et al., 2008) and were more in line with head movements described in

refs. (McCloskey et al., 2017; Skora et al., 2018). Still, in agreement with (Yemini et al., 2013), we believe that previously

described foraging movements include head-casts, yet we use a different term to distinguish our definition based on

propagation.

For Figure 8, propagated-bend cycle periods were calculated by doubling propagated-bend inter-bend intervals. For Figures 8G

and 8H, data are taken from 10min post-lights-on. For Figure 5I, head-bend amplitude is the summed amplitudes of segment

numbers 2 to 6.

Phase quantifications

Phases in Figures 1F, 7G, and 7H were quantified by linearly interpolating between detected peaks for each half cycle (a similar

procedure was used by (Eliav et al., 2018)). Interpolation enabled a phase calculation that was independent of intervening head-

casts or non-alternating SMD oscillations. In Figure 1F, 0 to p was interpolated from dorsal to ventral propagated-bend maxima

(peaks in head-bend angle #2) and p to 2p was interpolated from ventral to dorsal propagated-bend maxima, regardless of any

intervening head-casts. Ventral and dorsal head-casts were defined as head-casts following ventral or dorsal propagated-bends,

respectively; each head-cast type was therefore restricted to a half cycle. Only the first head-cast following a propagated-bend

was used to generate the histograms in Figure 1F. In Figures 7G and 7H, 0 to p was interpolated from the first SMDD peak following

an SMDV peak (i.e., SMDD alternating peak) to the first SMDV peak following an SMDD peak, regardless of any intervening SMDD

peaks. Similarly, p to 2p was interpolated from the first SMDV peak following an SMDD peak to the first SMDD peak following an

SMDV peak, regardless of any intervening SMDV peaks. Because of this definition, SMDD-only and SMDV-only oscillations were

each restricted to half cycles. To best compare to Figure 1F, we used the first trough (i.e., minimum, see Figure 7E, t = �0 s) of

each SMDD-only or SMDV-only oscillation to generate the histograms, as these corresponded to the first head-cast following a

propagated-bend.
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Phases in Figure 5D–5G were calculated using the Hilbert transform of head-bend angle #4, smoothed, to remove head-cast

signals. The Hilbert transform was applied individually to each period of forward or reverse locomotion, and border data were

removed as thesewere often partial cycles. To quantify the proportion of cycles that contained neural activity peaks, individual cycles

were segmented from 0 to 2p (SMDV) or from p to p (SMDD and DB02) so that the typical peak timing for each neuron was centered

and was therefore unlikely to fall into a neighboring cycle due to noise. Only cycles without missing data in both angle and neural

activity were considered.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantifications were performed using custom MATLAB (Mathworks) scripts. Standard statistical tests were performed using

Graphpad Prism 7. These tests, along with the value of n and what n represents, are reported in the figure legends. Additional tests

are described in detail in the following sections.

Reconstruction quality for neuronal subsets (pan-neuronal imaging)
To assess how well interneuron and motor neuron activity was captured in the top PC dimensions (Figure 2E; only identified neurons

used), we calculated for each neuron the Pearson’s linear correlation coefficient between the original data (activity traces and their

derivatives) and reconstructed traces after PCA. These reconstructed traces were obtained by matrix multiplication of the PC coef-

ficients with the PC loadings of the top (i = 1 to 5) PCs and addition of the mean of the original data, as follows:

Datarecon = ½PCCoeff1 : PCCoeff i �3 ½PCLoad1 : PCLoadi �+meanðOrigDataÞ:
We used the average correlation coefficient for all the traces of a neuronal cell type (inter neurons, motor neurons or other neurons)

in a recording as a measure of how similar reconstructed traces are to their original counterparts. This measure, in contrast to mean-

square-error, is insensitive to the magnitude of neuronal activity traces.

Peak frequency quantification (pan-neuronal imaging)
For all neurons that were identified in at least three recordings, we tested whether the inter-peak interval distribution between

such peaks, across all such forward command states, was significantly different from random, as follows. For each forward

command state, we randomly selected the same number of spike times to accumulate a random inter-peak interval distribution.

This procedure was repeated 106 times to obtain an average random distribution. To measure the magnitude of deviation from

random, we summed the absolute difference, bin-by-bin, between the average random distribution and the actual inter-peak interval

distribution. Thismeasure was also determined for each of the 106 resampled distributions, and the p value reported in Table S2 is the

fraction of resampled distributions with at least as large of a deviation from random as the actual distribution. To correct for

multiple comparisons, statistical significance was determined by the Benjamini-Hochberg-Yekutieli procedure (Benjamini and Yeku-

tieli, 2001).

Cross-correlation analysis (pan-neuronal imaging)
Statistical significance was evaluated by comparing the actual and resampled covariograms as follows. First, the covariogram was

assigned a positive or negative relationship, depending on whether the absolute value of the maximum or the minimum value of the

covariogram was larger (across all time bins); negative relationships found in this manner are marked with ‘‘(-)’’ in Figure 3C. Then,

each of the 106 resampled distributions were analyzed to determine the probability of finding correlations with absolute values as

large as either themaximum (for previously determined positive relationships) or minimum (for negative relationships) value observed

in the actual covariogram. The p value reported in Table S3 is the fraction of maxima or minima that are at least as large in absolute

value as that obtained from the actual distribution. To correct for multiple comparisons across all neuron pairs, statistical significance

was determined by the Benjamini-Hochberg-Yekutieli procedure (Benjamini and Yekutieli, 2001)

Polar histogram statistics
We tested the significance of the distributions in Figures 1F, 5D–5G, 7G, and 7H using resampling. We determined the probability of

obtaining a distribution as skewed as the real one by chance. For each half-cycle (Figures 1F, 7G, and 7H) or full cycle (Figures 5D–5G)

from which the real data had been extracted, we randomly selected one phase, to generate a random distribution of phases of the

same number as the real distribution. Because peakswere detected using a parameter delta for Figures 1F, 7G, and 7H, we restricted

the time points that could be selected to those where peaks could possibly have been found (i.e., those at least delta away from the

previous peak). We binned the data in the same manner as the real data and quantified the absolute difference, bin-by-bin, between

the resampled distribution and the all-phases distribution, which was calculated using the same phases fromwhich the random data

was selected. These bin-by-bin absolute differences were summed to give a total difference between the resampled data and the all-

phases distribution as a measure of sample distribution skewness. This procedure was repeated 106 times and the skewness of the

real distribution was measured the same way. The p value is the fraction of randomly sampled distributions that were at least as

skewed as the actual distribution.
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Significance between forward (Figure 5F) and reverse (Figure 5G) SMD peak distributions were determined by resampling inde-

pendently for each SMD. The reverse distribution contained fewer peaks than the forward distribution, so we randomly selected,

from the forward distribution, 106 samples of the same size as the reverse distribution. We binned the data in the same manner

as the real data and quantified, bin-by-bin, the absolute difference between the resampled and real forward distribution. These

bin-by-bin absolute differences were summed to give a total difference. The same procedure was done to measure the difference

between the forward and reversal distributions, and the p value is the fraction of randomly sampled forward distributions that differed

from the actual forward distribution at least as much as the reversal distribution did.

DATA AND CODE AVAILABILITY

Data and custom code generated in this study are available from the Lead Contact without restriction.
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