Continuous, Lateralized Auditory Stimulation Biases Visual Spatial Processing

Ulrich Pomper, Rebecca Schmid, Ulrich Ansorge

Sounds in our environment can easily capture human visual attention. Previous studies have investigated the impact of spatially localized, brief sounds on concurrent visuospatial attention. However, little is known on how the presence of a continuous, lateralized auditory stimulus (e.g., a person talking next to you while driving a car) impacts visual spatial attention (e.g., detection of critical events in traffic). In two experiments, we investigated whether a continuous auditory stream presented from one side biases visual spatial attention toward that side. Participants had to either passively or actively listen to sounds of various semantic complexities (tone pips, spoken digits, and a spoken story) while performing a visual target discrimination task. During both passive and active listening, we observed faster response times to visual targets presented spatially close to the relevant auditory stream. Additionally, we found that higher levels of semantic complexity of the presented sounds led to reduced visual discrimination sensitivity, but only during active listening to the sounds. We provide important novel results by showing that the presence of a continuous, ongoing auditory stimulus can impact visual processing, even when the sounds are not endogenously attended to. Together, our findings demonstrate the implications of ongoing sounds on visual processing in everyday scenarios such as moving about in traffic.

Department of Cognition, Emotion, and Methods in Psychology, Vienna Cognitive Science Hub
Frontiers in Psychology
No. of pages
Publication date
Peer reviewed
Austrian Fields of Science 2012
501006 Experimental psychology, 501011 Cognitive psychology
Portal url